Structure of rearranged and germ-line rabbit V kappa genes indicated that the CDR3 is encoded by the V kappa gene. 1990

H Ayadi, and P A Cazenave, and P N Marche
Département d'Immunologie, Institut Pasteur, CNRS UA 359, Paris, France.

The third complementary-determining regions (CDR3) of rabbit kappa chains are unusually long and the length is more heterogeneous when compared to those of the mouse and the human kappa chains. To study how the rabbit kappa light (L) chain genes create diversity and generate CDR3, we analyzed the structure of a rearranged variable kappa gene (Vr) and the variable (Vg) and joining (Jg) regions of the putative precursor genes. Alignment of the Vr gene sequence with that of the Vg and Jg regions allowed precise determination of the recombination event. Five nucleotides between the recombination point and the J2 heptamer were deleted, indicating flexibility in the recombination producing rabbit kappa chains. The entire Vg is contained in the rearranged product demonstrating that neither a D element nor an N sequence addition are required for the CDR3 formation. Comparison of the Vr and the Vg gene sequences show base substitutions suggesting that somatic mutations may contribute to rabbit kappa L chain diversity.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007145 Immunoglobulin kappa-Chains One of the types of light chains of the immunoglobulins with a molecular weight of approximately 22 kDa. Ig kappa Chains,Immunoglobulins, kappa-Chain,kappa-Immunoglobulin Light Chains,Immunoglobulin kappa-Chain,kappa-Chain Immunoglobulins,kappa-Immunoglobulin Light Chain,kappa-Immunoglobulin Subgroup VK-12,kappa-Immunoglobulin Subgroup VK-21,Chains, Ig kappa,Immunoglobulin kappa Chain,Immunoglobulin kappa Chains,Immunoglobulins, kappa Chain,Light Chain, kappa-Immunoglobulin,Light Chains, kappa-Immunoglobulin,kappa Chain Immunoglobulins,kappa Chains, Ig,kappa Immunoglobulin Light Chain,kappa Immunoglobulin Light Chains,kappa Immunoglobulin Subgroup VK 12,kappa Immunoglobulin Subgroup VK 21,kappa-Chain, Immunoglobulin,kappa-Chains, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005803 Genes, Immunoglobulin Genes encoding the different subunits of the IMMUNOGLOBULINS, for example the IMMUNOGLOBULIN LIGHT CHAIN GENES and the IMMUNOGLOBULIN HEAVY CHAIN GENES. The heavy and light immunoglobulin genes are present as gene segments in the germline cells. The completed genes are created when the segments are shuffled and assembled (B-LYMPHOCYTE GENE REARRANGEMENT) during B-LYMPHOCYTE maturation. The gene segments of the human light and heavy chain germline genes are symbolized V (variable), J (joining) and C (constant). The heavy chain germline genes have an additional segment D (diversity). Genes, Ig,Immunoglobulin Genes,Gene, Ig,Gene, Immunoglobulin,Ig Gene,Ig Genes,Immunoglobulin Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000916 Antibody Diversity The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS. Germ Line Theory,Antibody Diversities,Diversities, Antibody,Diversity, Antibody,Germ Line Theories,Theories, Germ Line,Theory, Germ Line

Related Publications

H Ayadi, and P A Cazenave, and P N Marche
November 1993, European journal of immunology,
H Ayadi, and P A Cazenave, and P N Marche
August 1990, European journal of immunology,
H Ayadi, and P A Cazenave, and P N Marche
January 1984, The EMBO journal,
H Ayadi, and P A Cazenave, and P N Marche
November 1984, Journal of immunology (Baltimore, Md. : 1950),
H Ayadi, and P A Cazenave, and P N Marche
January 1984, Nature,
H Ayadi, and P A Cazenave, and P N Marche
August 1989, Gene,
H Ayadi, and P A Cazenave, and P N Marche
December 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!