Expression of two "immediate early" genes, Egr-1 and c-fos, in response to renal ischemia and during compensatory renal hypertrophy in mice. 1990

A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
Cell Biology Unit, Shriners Burns Institute, Boston, Massachusetts 02114.

To identify specific genetic regulatory mechanisms associated with renal ischemia, we measured the accumulation of Egr-1 and c-fos mRNAs in the mouse kidney after occlusion of the renal artery and reperfusion. At 1 h after right nephrectomy and arterial occlusion of the contralateral kidney for 10 or 30 min, Egr-1 mRNA levels were three to five times greater in these kidneys as compared with those in control animals that had sustained unilateral nephrectomy alone and were much greater than levels in the normal organ. Whether ischemia was imposed for 10 or for 30 min, renal Egr-1 mRNA contents were equivalent and remained elevated after 24 h of reperfusion subsequent to 30 min of ischemia. Although c-fos mRNA also accumulated in response to ischemia and reperfusion, the pattern differed from that of Egr-1 in that c-fos mRNA content varied with the duration of ischemia and was undetectable 24 h after injury. Contralateral nephrectomy was not necessary to see the marked accumulation of Egr-1 and c-fos mRNAs with unilateral ischemia. Reflow was necessary, however, since only minimal sequence accumulation occurred by the end of the ischemic period. After left uninephrectomy alone, Egr-1 mRNA levels in the remaining kidney were maximal 30 min after surgery, but were not detectable thereafter; c-fos mRNA levels did not change after unilateral nephrectomy. Differential expression of early growth-related genes implicated in transcriptional activation may influence tissue recovery after renal ischemia.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
December 1999, Brain research. Molecular brain research,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
November 2001, Brain research,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
January 1992, Rheumatology international,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
May 1998, Annals of the New York Academy of Sciences,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
May 1998, Annals of the New York Academy of Sciences,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
April 1993, The American journal of physiology,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
January 2018, Neurobiology of learning and memory,
A J Ouellette, and R A Malt, and V P Sukhatme, and J V Bonventre
January 2024, Dementia & neuropsychologia,
Copied contents to your clipboard!