Altered signal transduction secondary to surface IgM cross-linking on B-chronic lymphocytic leukemia cells. Differential activation of the phosphatidylinositol-specific phospholipase C. 1990

C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
Laboratory of Immunochemistry and Immunopathology, INSERM U. 108, Paris, France.

To further study the mechanisms by which surface Ig triggering activates the inositol phospholipid signaling pathway, we have used B cells from chronic lymphocytic leukemia patients which, as previously described, display two patterns of response upon sIg cross-linking: in one group this cross-linking induces an inositol phosphate release, an intracellular free Ca2+ concentration elevation and a subsequent cell proliferation; in a second group none of these events occur although there is an increased class II Ag expression following anti-mu stimulation as in the first group. We have been able to demonstrate that the phosphatidyl inositol specific phospholipase C (PI-PLC) can be activated in permeabilized B cells from the first group by direct stimulation, with GPT gamma S, of a guanine nucleotide binding (G) protein. In addition, since anti-mu + GTP gamma S stimulate an increased inositol phosphate production in these cells, this suggests that surface Ig cross-linking activates PI-PLC via a G protein. However, in cells from the second group no inositol phosphate is released after GTP gamma S stimulation although PI-PLC can be directly activated by high Ca2+ concentrations. This reflects in these cells, an interruption of the signaling cascade sIg/G protein/PI-PLC at the level of the G protein or at the G protein/PI-PLC coupling. In cells from both groups PMA treatment, which is known to alter phosphatidyl inositol metabolism in B cells, completely inhibits PI-PLC activation even by high Ca2+ concentrations. These studies show that the phosphatidyl inositol-dependent signaling cascade after surface Ig triggering can be altered at different levels in B cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011940 Receptor Aggregation Chemically stimulated aggregation of cell surface receptors, which potentiates the action of the effector cell. Aggregation, Receptor,Capping, Receptor,Receptor Capping
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine

Related Publications

C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
March 2005, Journal of immunology (Baltimore, Md. : 1950),
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
May 1988, Blood,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
June 1995, Leukemia & lymphoma,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
May 2004, The Journal of biological chemistry,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
November 2011, Current opinion in oncology,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
March 2002, Blood,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
February 1995, International immunology,
C Hivroz, and B Gény, and J C Brouet, and C Grillot-Courvalin
January 1988, Nouvelle revue francaise d'hematologie,
Copied contents to your clipboard!