Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in β-thalassemia. 2010

Sara Gardenghi, and Robert W Grady, and Stefano Rivella
Hematology-Oncology, Department of Pediatrics, Weill Cornell Medical College, 515 East 71st Street, New York, NY 10021, USA.

β-Thalassemia is a genetic disorder caused by mutations in the β-globin gene and characterized by chronic anemia caused by ineffective erythropoiesis, and accompanied by a variety of serious secondary complications such as extramedullary hematopoiesis, splenomegaly, and iron overload. In the past few years, numerous studies have shown that such secondary disease conditions have a genetic basis caused by the abnormal expression of genes with a role in controlling erythropoiesis and iron metabolism. In this article, the most recent discoveries related to the mechanism(s) responsible for anemia/ineffective erythropoiesis and iron overload are discussed in detail. Particular attention is paid to the pathway(s) controlling the expression of hepcidin, which is the main regulator of iron metabolism, and the Epo/EpoR/Jak2/Stat5 signaling pathway, which regulates erythropoiesis. Better understanding of how these pathways function and are altered in β-thalassemia has revealed several possibilities for development of new therapeutic approaches to treat of the complications of this disease.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000740 Anemia A reduction in the number of circulating ERYTHROCYTES or in the quantity of HEMOGLOBIN. Anemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017086 beta-Thalassemia A disorder characterized by reduced synthesis of the beta chains of hemoglobin. There is retardation of hemoglobin A synthesis in the heterozygous form (thalassemia minor), which is asymptomatic, while in the homozygous form (thalassemia major, Cooley's anemia, Mediterranean anemia, erythroblastic anemia), which can result in severe complications and even death, hemoglobin A synthesis is absent. Anemia, Cooley's,Anemia, Erythroblastic,Anemia, Mediterranean,Hemoglobin F Disease,Thalassemia Major,Thalassemia Minor,Erythroblastic Anemia,Mediterranean Anemia,Microcytemia, beta Type,Thalassemia Intermedia,Thalassemia Major (beta-Thalassemia Major),Thalassemia Minor (beta-Thalassemia Minor),Thalassemia, beta Type,beta Thalassemia,Anemia, Cooley,Anemia, Cooleys,Anemias, Erythroblastic,Anemias, Mediterranean,Cooley's Anemia,Disease, Hemoglobin F,Intermedia, Thalassemia,Intermedias, Thalassemia,Major, Thalassemia (beta-Thalassemia Major),Majors, Thalassemia (beta-Thalassemia Major),Mediterranean Anemias,Microcytemias, beta Type,Minor, Thalassemia (beta-Thalassemia Minor),Minors, Thalassemia (beta-Thalassemia Minor),Thalassemia Intermedias,Thalassemia Major (beta Thalassemia Major),Thalassemia Majors (beta-Thalassemia Major),Thalassemia Minor (beta Thalassemia Minor),Thalassemia Minors (beta-Thalassemia Minor),Thalassemia, beta,Thalassemias, beta,Thalassemias, beta Type,Type Microcytemia, beta,Type Microcytemias, beta,Type Thalassemia, beta,Type Thalassemias, beta,beta Thalassemias,beta Type Microcytemia,beta Type Microcytemias,beta Type Thalassemia,beta Type Thalassemias
D017467 Receptors, Erythropoietin Cell surface proteins that bind erythropoietin with high affinity and trigger intracellular changes influencing the behavior of cells. Erythropoietin Receptors,Erythropoietin Receptor,Receptor, Erythropoietin
D019190 Iron Overload An excessive accumulation of iron in the body due to a greater than normal absorption of iron from the gastrointestinal tract or from parenteral injection. This may arise from idiopathic hemochromatosis, excessive iron intake, chronic alcoholism, certain types of refractory anemia, or transfusional hemosiderosis. (From Churchill's Illustrated Medical Dictionary, 1989) Overload, Iron
D023181 Antimicrobial Cationic Peptides Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane. Cationic Antimicrobial Peptide,Cationic Antimicrobial Peptides,Cationic Host Defense Peptides,Host Defense Peptide,Microbicidal Cationic Proteins,Amphipathic Cationic Antimicrobial Peptides,Host Defense Peptides,Antimicrobial Peptide, Cationic,Antimicrobial Peptides, Cationic,Cationic Peptides, Antimicrobial,Cationic Proteins, Microbicidal,Defense Peptide, Host,Defense Peptides, Host,Peptide, Cationic Antimicrobial,Peptide, Host Defense,Peptides, Antimicrobial Cationic,Peptides, Cationic Antimicrobial,Peptides, Host Defense,Proteins, Microbicidal Cationic

Related Publications

Sara Gardenghi, and Robert W Grady, and Stefano Rivella
April 2018, Hematology/oncology clinics of North America,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
January 2010, Advances in hematology,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
January 2019, Blood,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
July 2023, Blood advances,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
January 2013, TheScientificWorldJournal,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
October 2011, Blood,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
June 2011, [Rinsho ketsueki] The Japanese journal of clinical hematology,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
April 2020, BMC medical genetics,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
October 2015, Blood,
Sara Gardenghi, and Robert W Grady, and Stefano Rivella
January 2015, Blood,
Copied contents to your clipboard!