Effects of androgens on bioactivity and immunoreactivity of pituitary FSH in GnRH antagonist-treated male rats. 1990

O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
Max Planck Clinical Research Unit for Reproductive Medicine, Münster, FRG.

The effects of androgens on the bioactivity and molecular composition of pituitary FSH were examined in intact and GnRH antagonist-suppressed male rats. Eight groups of adult Sprague-Dawley rats were subjected to the following treatments: antagonist (75 micrograms/day by osmotic minipumps; sc), testosterone-filled Silastic implants (3 X 5 cm, sc), dihydrotestosterone-filled Silastic implants (3 X 5 cm, sc), E2 benzoate (15 micrograms/day, sc), and combined administration of antagonist with either steroid for 3 weeks. At the end of the treatment period, pituitaries were dissected out and homogenised. FSH content was determined in the pituitary extracts by an in vitro bioassay and a radioimmunoassay. Individual pituitary extracts from rats treated with vehicle, testosterone and testosterone + antagonist were subjected to isoelectric-focusing on sucrose density gradients performed in the pH range from 3.5 to 7.0. Individual isoelectric-focusing fractions (100-120) were analysed for bioactive and immunoreactive FSH. Treatment with antagonist, E2 or antagonist + E2 caused a significant decrease in pituitary FSH, whereas testosterone and dihydrotestosterone alone or in combination with antagonist prevented the decrease in pituitary FSH. The effects of all treatments on both bioactive and immunoreactive FSH were similar. Testosterone treatment not only maintained FSH synthesis but also altered the molecular composition of pituitary FSH. Following treatment with testosterone there was a shift of maximal FSH bioactivity to the more acidic pH range. On the other hand, less bioactivity was recovered than corresponding immunoreactivity in the higher pH region, resulting in significantly reduced ratios of bioactivity to immunoreactivity of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008297 Male Males
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities

Related Publications

O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
December 1986, Acta endocrinologica,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
January 1986, Acta endocrinologica. Supplementum,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
January 1967, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
May 1971, Endocrinology,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
January 2006, Journal of andrology,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
December 1986, Journal of steroid biochemistry,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
June 1974, Acta endocrinologica,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
May 1994, The Journal of endocrinology,
O P Sharma, and S A Khan, and G F Weinbauer, and M Arslan, and E Nieschlag
January 1988, The American journal of physiology,
Copied contents to your clipboard!