Effect of angiotensin II and norepinephrine on isolated rat afferent and efferent arterioles. 1990

B H Yuan, and J B Robinette, and J D Conger
Department of Medicine, University of Colorado School of Medicine, Denver.

Differential sensitivity of the pre- and postglomerular arterial vessels to vasoconstrictor activity of angiotensin II (ANG II) and norepinephrine (NE) is controversial. To avoid the complex extravascular neurohumoral variables that may have accounted for different results in the intact rat kidney, an isolated arteriole technique was used to examine the dose responses of ANG II and NE on afferent (AA) and efferent arterioles (EA) from Sprague-Dawley rats. EA were more sensitive than AA to ANG II (EC50 = 3.2 +/- 1.8 x 10(-11) and 1.0 +/- 1.6 x 10(-9) M, respectively, P less than 0.001), whereas EC50 of both AA and EA to NE were similar (3.4 +/- 2.3 x 10(-8) and 1.4 +/- 2.6 x 10(-8) M, respectively). The dose-response curves of AA to ANG II were not different when perfused at different luminal pressures (90 and 30 mmHg). In contrast, EA were more sensitive to ANG II at 30 than at 90 mmHg (3.0 +/- 1.2 x 10(-11) and 5.0 +/- 1.8 x 10(-10) M, respectively, P less than 0.005). The EC50 of EA to NE was unaffected by similar changes in luminal pressures. The mean dose-response curves of AA to ANG II were the same with and without the addition of 10(-5) M indomethacin; however, in arterioles displaying a focal constriction pattern to ANG II the response became uniform. It is concluded that, in the isolated rat glomerular arterioles, EA are more sensitive to ANG II than AA, but both vessels respond similarly to NE. The decreased ANG II sensitivity in AA is not related to the higher in vivo pressure, and the attenuated response in AA does not appear to be mediated primarily through ANG II-stimulated vasodilator prostanoid activity. EA sensitivity to ANG II appears to be inversely related to lumen pressure.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001158 Arteries The vessels carrying blood away from the heart. Artery
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin

Related Publications

B H Yuan, and J B Robinette, and J D Conger
November 1992, The American journal of physiology,
B H Yuan, and J B Robinette, and J D Conger
December 1986, Kidney international,
B H Yuan, and J B Robinette, and J D Conger
December 1991, The American journal of physiology,
B H Yuan, and J B Robinette, and J D Conger
December 1994, Japanese journal of pharmacology,
B H Yuan, and J B Robinette, and J D Conger
August 2007, Analytical and quantitative cytology and histology,
B H Yuan, and J B Robinette, and J D Conger
August 1997, The American journal of physiology,
B H Yuan, and J B Robinette, and J D Conger
October 1993, The Journal of clinical investigation,
B H Yuan, and J B Robinette, and J D Conger
January 2004, American journal of nephrology,
B H Yuan, and J B Robinette, and J D Conger
August 1991, The American journal of physiology,
B H Yuan, and J B Robinette, and J D Conger
December 1994, Kidney international,
Copied contents to your clipboard!