Effects of corticosteroids on functional recovery and neuron survival after facial nerve injury in mice. 2011

David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
Department of Otolaryngology-Head & Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305, USA.

OBJECTIVE To assess the effects of corticosteroid administration on functional recovery and cell survival in the facial motor nucleus (FMN) following crush injury in adult and juvenile mice and to evaluate the relationship between functional recovery and facial motoneuron survival. METHODS A prospective blinded analysis of functional recovery and cell survival in the FMN after crush injury in juvenile and adult mice was carried out. All mice underwent a unilateral facial nerve crush injury and received 7 doses of daily injections. Adults received normal saline or low-dose or high-dose corticosteroid treatment. Juveniles received either normal saline or low-dose corticosteroid treatment. Whisker function was monitored to assess functional recovery. Stereologic analysis was performed to determine neuron and glial survival in the FMN following recovery. RESULTS Following facial nerve injury, all adult mice recovered fully, while juvenile mice recovered slower and incompletely. This corresponded to a significantly greater neuron loss in the FMN of juveniles compared with adults. Corticosteroid treatment slowed functional recovery in adult mice. This corresponded with significantly greater neuron loss in the FMN in corticosteroid-treated mice. In juvenile mice, corticosteroid treatment showed a trend, which was significant at several time points, toward a more robust functional recovery compared with controls. CONCLUSIONS Corticosteroid treatment slows functional recovery and impairs neuron survival following facial nerve crush injury in adult mice. The degree of motor neuron survival corresponds with functional status. In juvenile mice, crush injury results in overall poor functional recovery and profound cell loss in the FMN. With low-dose corticosteroid treatment, there is a significantly enhanced functional recovery after injury in these mice (P < .05).

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration

Related Publications

David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
January 2004, Archives of facial plastic surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
January 2007, Archives of facial plastic surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
July 2008, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
January 2005, Archives of facial plastic surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
February 2015, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
July 2019, Cell death & disease,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
January 2010, Archives of facial plastic surgery,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
May 2014, Neuroreport,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
October 2002, Clinical orthopaedics and related research,
David M Lieberman, and Taha A Jan, and S Omar Ahmad, and Sam P Most
August 2014, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology,
Copied contents to your clipboard!