Comparison between transport and degradation of leucine and glutamine by peripheral human lymphocytes exposed to concanavalin A. 1990

B Koch, and M T Schröder, and G Schäfer, and P Schauder
Department of Medicine, University of Göttingen, Federal Republic of Germany.

Transport and pathways of leucine and glutamine degradation were evaluated in resting human peripheral lymphocytes and compared with the changes induced by concanavalin A (ConA). Cells were incubated with [1-14C]leucine (0.15 mM), [U-14C]leucine (0.15 mM), or [U-14C]glutamine (0.4 mM) after culture with or without 2, 5, 7, or 10 micrograms/ml ConA for 2, 18, or 24 hours, respectively. Initial rates of transport of leucine and glutamine were augmented 2.7-fold and threefold by the mitogen. Leucine transamination, irreversible oxidation, and catabolism beyond isovaleryl-CoA were increased by 90%, 20%, and 60%, respectively. Glutamine utilization increased threefold; accumulation of glutamate, aspartate, and ammonia increased by 700%, 50%, and 100%, respectively, and 14CO2 production by about 400% in response to ConA. The results indicate that ConA stimulates to about the same extent transport of leucine and glutamine into lymphocytes. Glutamine is mainly channeled into catabolic pathways, while leucine remains largely preserved. It is suggested that these metabolic changes provide more leucine for incorporation into protein and more N- and C-atoms required for the synthesis of macromolecules and energy from glutamine.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000641 Ammonia A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

B Koch, and M T Schröder, and G Schäfer, and P Schauder
August 1989, Metabolism: clinical and experimental,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
October 1990, Journal of cellular physiology,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
June 1988, Biochemical and biophysical research communications,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
March 1988, Biochimica et biophysica acta,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
November 1975, Clinical and experimental immunology,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
April 1988, Biochimica et biophysica acta,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
January 1988, Metabolism: clinical and experimental,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
December 1976, The Journal of experimental medicine,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
September 1980, The Journal of biological chemistry,
B Koch, and M T Schröder, and G Schäfer, and P Schauder
January 1979, Clinical immunology and immunopathology,
Copied contents to your clipboard!