A new approach for the analysis of HLA class II polymorphism: 'HLA oligotyping'. 1990

J M Tiercy, and M Jeannet, and B Mach
Transplantation Immunology Unit, Hôpital Cantonal Universitaire de Genève, Switzerland.

Histocompatibility typing allows the matching of patients and donors in organ transplantation, and the accuracy of HLA matching influences to a great extent the clinical outcome. Recent breakthroughs in the molecular biology of HLA class II genes have revealed that the degree of HLA diversity and polymorphism is in fact much greater than was expected on the basis of the traditional serological HLA typing assays. In parallel, it has become possible to analyse this extensive polymorphism directly at the level of the HLA class II genes and of their DNA sequences. We have described a DNA typing procedure referred to as 'HLA oligotyping' which is based on the hybridisation of allele and loci specific oligonucleotide probes. This procedure has now become operational on a large scale and this review describes the principles and major applications of the technique. It consists in the hybridisation of DNA with informative sequence-specific oligonucleotide probes, following an amplification of DNA in vitro by the polymerase chain reaction (PCR). The use of this highly sensitive technique for HLA-DR, -DQ and -DP typing is discussed, focusing on the clinical applications in the field of organ transplantation, particularly for bone marrow transplantation with unrelated donors. It now allows the unambiguous identification of all HLA subtypes, including those that cannot be recognised otherwise, and it represents powerful complement to current methods of HLA typing. Finally this methodology is widely used in HLA-disease association studies, aiming at the characterisation of HLA class II epitopes involved in the susceptibility or resistance to autoimmune diseases.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D004198 Disease Susceptibility A constitution or condition of the body which makes the tissues react in special ways to certain extrinsic stimuli and thus tends to make the individual more than usually susceptible to certain diseases. Diathesis,Susceptibility, Disease,Diatheses,Disease Susceptibilities,Susceptibilities, Disease
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006650 Histocompatibility Testing Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed) Crossmatching, Tissue,HLA Typing,Tissue Typing,Crossmatchings, Tissue,HLA Typings,Histocompatibility Testings,Testing, Histocompatibility,Testings, Histocompatibility,Tissue Crossmatching,Tissue Crossmatchings,Tissue Typings,Typing, HLA,Typing, Tissue,Typings, HLA,Typings, Tissue
D006681 HLA-D Antigens Human immune-response or Class II antigens found mainly, but not exclusively, on B-lymphocytes and produced from genes of the HLA-D locus. They are extremely polymorphic families of glycopeptides, each consisting of two chains, alpha and beta. This group of antigens includes the -DR, -DQ and -DP designations, of which HLA-DR is most studied; some of these glycoproteins are associated with certain diseases, possibly of immune etiology. Antigens, HLA-D,Class II Human Antigens,HLA-Dw Antigens,Human Class II Antigens,Ia-Like Antigens, Human,Immune Response-Associated Antigens, Human,Immune-Associated Antigens, Human,Immune-Response Antigens, Human,HLA-D,HLA-Dw,Immune Response Associated Antigens, Human,Antigens, HLA D,Antigens, HLA-Dw,Antigens, Human Ia-Like,Antigens, Human Immune-Associated,Antigens, Human Immune-Response,HLA D Antigens,HLA Dw Antigens,Human Ia-Like Antigens,Human Immune-Associated Antigens,Human Immune-Response Antigens,Ia Like Antigens, Human,Immune Associated Antigens, Human,Immune Response Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting

Related Publications

J M Tiercy, and M Jeannet, and B Mach
December 1992, Presse medicale (Paris, France : 1983),
J M Tiercy, and M Jeannet, and B Mach
November 1995, Tissue antigens,
J M Tiercy, and M Jeannet, and B Mach
April 1987, Human immunology,
J M Tiercy, and M Jeannet, and B Mach
October 1995, Tissue antigens,
J M Tiercy, and M Jeannet, and B Mach
May 1993, Archives of pathology & laboratory medicine,
J M Tiercy, and M Jeannet, and B Mach
September 1993, Tissue antigens,
J M Tiercy, and M Jeannet, and B Mach
January 1995, Tissue antigens,
J M Tiercy, and M Jeannet, and B Mach
July 1985, Immunological reviews,
Copied contents to your clipboard!