TGF-β1 mediated activation of Rho kinase induces TGF-β2 and endothelin-1 expression in human hepatic stellate cells. 2011

Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
Inflammation Research Unit, Pfizer Global Research and Development, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.

OBJECTIVE TGF-β1 a key pro-fibrotic factor activates signaling via the canonical ALK/SMAD as well as the Rho GTPase pathways. Rho kinase is a major downstream effector of Rho GTPase signaling. To understand the contribution of Rho kinase activation towards the synthesis of fibrotic mediators by hepatic stellate cells (HSC), we first profiled activated HSC and fibrotic liver tissues to identify common transcripts that were most significantly up-regulated across all samples. We then applied a pharmacologic as well as a genomics approach in a TGF-β1 activated human HSC line (LX-2) to study the involvement of Rho kinase signaling in the expression of a subset of these up-regulated fibrotic genes. METHODS Total RNA was profiled using microarray chips. Data analysis was performed using Ingenuity Pathway Analysis software. LX-2 cells were activated with 10 ng/ml of TGF-β1 for 24 h. Activation of downstream pathways was assessed by Western blotting with phospho-specific target biomarker antibodies. Targeted knockdown of Rho kinase isoforms 1 and 2 was achieved with RNAi. Secreted levels of endothelin-1, TGF-β2, and thrombospondin-1 were measured by ELISA. RESULTS TGF-β1 activated Rho kinase and Smad pathways in LX-2 cells. The syntheses of endothelin-1 and TGF-β2 were significantly inhibited in TGF-β1 treated LX-2 cells, by isoform non-selective Rho kinase inhibitors. siRNA knockdown of each isoform suggested that endothelin-1 synthesis was largely mediated by the Rho kinase-1 isoform, while both isoforms contributed to the synthesis of TGF-β2. CONCLUSIONS The TGF-β1 mediated secretion of endothelin-1 and TGF-β2 is mediated by Rho kinase activation in human HSC.

UI MeSH Term Description Entries
D008103 Liver Cirrhosis Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules. Cirrhosis, Liver,Fibrosis, Liver,Hepatic Cirrhosis,Liver Fibrosis,Cirrhosis, Hepatic
D008297 Male Males
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
September 2013, Digestive diseases and sciences,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
July 2019, Molecular medicine reports,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
November 2012, Digestive diseases and sciences,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
January 2016, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
February 2018, Molecular medicine reports,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
March 2014, Molecular and cellular biochemistry,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
June 2024, Ecotoxicology and environmental safety,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
February 2015, Molecular and cellular biochemistry,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
October 2014, Toxicology and applied pharmacology,
Hideaki Shimada, and Nicholas R Staten, and Lakshman E Rajagopalan
September 2021, Biochemical and biophysical research communications,
Copied contents to your clipboard!