Reduction in testicular function in rats. II. Reduction by dexamethasone in fetal and neonatal rats. 1990

J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
Laboratoire de Physiologie animale, Faculté des Sciences d'Amiens, France.

Chronic administration of dexamethasone in drinking water to maternal rats from days 15 to 21 of gestation (1) reduced plasma testosterone concentrations in male fetuses between days 19 and 21 but not earlier on day 18 and abolished the prenatal peak of plasma testosterone which normally occurs on day 19 of gestation, and (2) suppressed the postnatal surge of plasma testosterone in male newborns 1.5 and 2 h after delivery at term by cesarean section. The administration of dexamethasone to male fetuses at birth induced 1 h later a slight but not significant increase in hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary luteinizing hormone (LH) contents, reduced drastically plasma LH levels and completely prevented the postnatal surge of plasma testosterone which occurred normally in littermate controls. A rise in pituitary LH content, and a sharp reduction in plasma LH and testosterone concentrations were noted in 19-day-old male fetuses whose mothers were acutely treated with dexamethasone on day 18 of gestation. Similar evolutions for LH were observed in littermate females. These results suggest that the inhibitory effects of exogenous glucocorticoids on testosterone secretion could be mediated in both fetuses and newborns at least partially through suppression of the hypothalamic and pituitary secretion of GnRH and LH, respectively, and provide insight how stress or hormone imbalance may affect the development of this neuroendocrine system.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D010906 Pituitary Hormone-Releasing Hormones Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone. Hormones, Pituitary Hormone Releasing,Hypophysiotropic Hormones,Hypothalamic Hypophysiotropic Hormone,Hypothalamic Releasing Factor,Hypothalamic Releasing Hormone,Hypothalamic Releasing Hormones,Hormone, Hypothalamic Hypophysiotropic,Hormones, Hypophysiotropic,Hypophysiotropic Hormone, Hypothalamic,Pituitary Hormone Releasing Hormones,Releasing Hormone, Hypothalamic
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011297 Prenatal Exposure Delayed Effects The consequences of exposing the FETUS in utero to certain factors, such as NUTRITION PHYSIOLOGICAL PHENOMENA; PHYSIOLOGICAL STRESS; DRUGS; RADIATION; and other physical or chemical factors. These consequences are observed later in the offspring after BIRTH. Delayed Effects, Prenatal Exposure,Late Effects, Prenatal Exposure
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal

Related Publications

J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
January 1976, Birth defects original article series,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
October 1988, Cell biochemistry and function,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
July 1995, The Journal of experimental zoology,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
September 1991, Pediatric research,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
April 1969, Endocrinology,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
October 2006, Reproduction (Cambridge, England),
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
January 1997, Biology of the neonate,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
June 1980, Pediatrie,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
January 1985, Research communications in chemical pathology and pharmacology,
J D Lalau, and M L Aubert, and D F Carmignac, and I Grégoire, and J P Dupouy
January 2019, Avicenna journal of phytomedicine,
Copied contents to your clipboard!