Disrupting parietal function prolongs dominance durations in binocular rivalry. 2010

Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
Vision and Cognition Lab, Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany.

Human brain imaging studies of bistable perceptual phenomena revealed that frontal and parietal areas are activated during perceptual switches between the two conflicting percepts. However, these studies do not provide information about causality, i.e., whether activity reports a consequence or a cause of the perceptual change. Here we used functional magnetic resonance imaging to individually localize four parietal regions involved in perceptual switches during binocular rivalry in 15 subjects and subsequently disturbed their neural processing and that of a control site using 2 Hz repetitive transcranial magnetic stimulation (TMS) during binocular rivalry. We found that TMS over one of the sites, the right intraparietal sulcus (IPS), prolonged the periods of stable percepts. Additionally, the more lateralized the blood oxygen level-dependent signal was in IPS, the more lateralized the TMS effects were. Lateralization varied considerably across subjects, with a right-hemispheric bias. Control replay experiments rule out nonspecific effects of TMS on task performance, reaction times, or eye blinks. Our results thus demonstrate a causal, destabilizing, and individually lateralized effect of normal IPS function on perceptual continuity in rivalry. This is in accord with a role of IPS in perceptual selection, relating its role in rivalrous perception to that in attention.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision
D050781 Transcranial Magnetic Stimulation A technique that involves the use of electrical coils on the head to generate a brief magnetic field which reaches the CEREBRAL CORTEX. It is coupled with ELECTROMYOGRAPHY response detection to assess cortical excitability by the threshold required to induce MOTOR EVOKED POTENTIALS. This method is also used for BRAIN MAPPING, to study NEUROPHYSIOLOGY, and as a substitute for ELECTROCONVULSIVE THERAPY for treating DEPRESSION. Induction of SEIZURES limits its clinical usage. Transcranial Magnetic Stimulation, Paired Pulse,Transcranial Magnetic Stimulation, Repetitive,Transcranial Magnetic Stimulation, Single Pulse,Magnetic Stimulation, Transcranial,Magnetic Stimulations, Transcranial,Stimulation, Transcranial Magnetic,Stimulations, Transcranial Magnetic,Transcranial Magnetic Stimulations

Related Publications

Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
December 2005, Journal of vision,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
September 2010, Current biology : CB,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
March 1978, American journal of optometry and physiological optics,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
December 2009, Journal of vision,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
May 2004, Nature,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
January 2010, Attention, perception & psychophysics,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
July 1980, Perception & psychophysics,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
December 2019, Vision research,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
January 2016, Journal of vision,
Natalia Zaretskaya, and Axel Thielscher, and Nikos K Logothetis, and Andreas Bartels
October 1973, The Journal of general psychology,
Copied contents to your clipboard!