Liver injury following renal ischemia reperfusion in rats. 2010

B Wang, and M Bai, and Y Bai, and Q Li
Henan College of Chinese Traditional Medicine, Zhengzhou, Henan Province, China.

BACKGROUND All transplanted solid organs experience some degree of ischemia-reperfusion (I-R) injury. There is some evidence that I-R injury affects remote organs. We investigated the effects of renal I-R injury on hepatic function, cytochrome P-450 enzymes, and morphology in rats. METHODS A rat model of 1 hour of renal ischemia followed by 1, 4, or 8 hours of reperfusion. The assays included serum alanine aminotransferase (sALT) aspartate aminotransferase (sAST), cytochrome P-450 enzymes (CYP3A, CYP2E1), hepatic glutathione S-transferase (GST), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and myeloperoxidase (MPO) activities. In addition, we measured serum blood urea nitrogen (BUN) and serum creatinine (SCr), and renal MDA, glutathione peroxidase levels, and SOD activities. Morphological liver changes were observed by optical and electron microscopy. RESULTS sALT and sAST significantly increased after 1 hour of ischemia and 4 or 8 hours of reperfusion. Hepatic CYP3A and CYP2E1 activities were significantly decreased after 1 hour of ischemia and 1 or 4 hours of reperfusion. Hepatic GST, GSH, and SOD activities decreased after renal I-R, while MDA levels and MPO increased. Serum BUN and SCr levels significantly increased after reperfusion. Changes in renal MDA, GSH-px, and SOD activities were similar to those in the liver. The only difference between them was the peak time of injury: for the kidney, 8 hours, while for the liver, some changes appeared at 4 hours. Optical microscopy showed hepatic passive venous congestion and fatty degeneration as well as local necrosis. Transmission electronic microscope showed hepatic cell membrane was damaged, which seemed to explain some data results above. For example, the release of hepatic ALT and AST increased serum ALT and AST. More importantly, the release of neutrophil chemokine induced neutrophil accumulation in the liver, which could cause further damage. CONCLUSIONS Our findings indicated that hepatic function, cytochrome P-450 enzymes and morphology were affected by renal I-R injury. These effects seemed to be mediated in part by an imbalance of oxidant and antioxidant systems and recruitment of neutrophils to the liver.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008107 Liver Diseases Pathological processes of the LIVER. Liver Dysfunction,Disease, Liver,Diseases, Liver,Dysfunction, Liver,Dysfunctions, Liver,Liver Disease,Liver Dysfunctions
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D001806 Blood Urea Nitrogen The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) BUN,Nitrogen, Blood Urea,Urea Nitrogen, Blood
D003404 Creatinine Creatinine Sulfate Salt,Krebiozen,Salt, Creatinine Sulfate,Sulfate Salt, Creatinine
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine

Related Publications

B Wang, and M Bai, and Y Bai, and Q Li
March 2008, Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract,
B Wang, and M Bai, and Y Bai, and Q Li
January 2015, PloS one,
B Wang, and M Bai, and Y Bai, and Q Li
January 1998, Pediatric nephrology (Berlin, Germany),
B Wang, and M Bai, and Y Bai, and Q Li
June 2023, Drug research,
B Wang, and M Bai, and Y Bai, and Q Li
August 2015, Experimental and therapeutic medicine,
B Wang, and M Bai, and Y Bai, and Q Li
January 1993, Archives of toxicology,
B Wang, and M Bai, and Y Bai, and Q Li
April 2013, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
B Wang, and M Bai, and Y Bai, and Q Li
October 2017, Iranian journal of basic medical sciences,
B Wang, and M Bai, and Y Bai, and Q Li
January 2000, Transplant international : official journal of the European Society for Organ Transplantation,
B Wang, and M Bai, and Y Bai, and Q Li
July 2013, The Journal of surgical research,
Copied contents to your clipboard!