Cellular alterations dependent upon the polyoma virus Hr-t function: separation of mitogenic from transforming capacities. 1978

R Schlegel, and T L Benjamin

Hr-t mutants of polyoma virus are restricted in their growth properties (host range) and defective in cell transformation and tumor induction. The present study indicates that these mutants have lost the ability to induce morphological transformation, but have retained a mitogenic function. Thus an early and dramatic difference between wild-type virus and hr-t mutant-infected cultures of rat fibroblasts is the morphological change in individual cells observed by light, fluorescence and scanning electron microscopy. Viruses containing an intact hr-t function (wild-type virus and ts-a mutants) induce a transformed phenotype consisting of stellate cell shape, loss of defined cytoplasmic actin architecture, cellular "underlapping," and increased nuclear and nucleolar sizes. These prominent alterations constitute an abortive transformation, peaking 24-48 hr post-infection, and subsequently resolving in most or all of the cells. In contrast, cells infected with hr-t mutants do not develop the above structural changes, but rather retain their preinfection appearance. Both wild-type virus and hr-t mutants induce cellular DNA synthesis in confluent monolayers of rat cells beginning 12-14 hr post-infection. Flow microfluorometric (FMF) analysis confirms the viral mediated transit of cells from the G1 to the S and G2 phases of the cell cycle, as well as an increase in the proportion of cells with an 8N (octaploid) DNA content. Approximately 50% of the clones isolated from wild-type-infected cultures are polyploid. Stable transformants are found among these polyploid clones, but the majority of the latter resemble the parental cells in their morphology and growth properties. Polyploid clones are derived from hr-t mutant-infected cultures at a much lower frequency, similar to that of mock-infected cultures. Data obtained by sequential labeling of infected cultures with 3 H-thymidine and 5-bromo-deoxyuridine, together with cell number quantitation, indicate that hr-t mutants promote only a single round of cell division, while the wild-type virus and ts-a mutants promote multiple rounds. Loss of the hr-t function in polyoma virus therefore reveals a residual viral mitogenic activity, but prevents the virus from effecting morphological transformation of cells with concomitant loss of defined actin cables, polyploidization and multiple cycles of cell division in confluent cultures.

UI MeSH Term Description Entries
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D011123 Polyploidy The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc. Polyploid,Polyploid Cell,Cell, Polyploid,Cells, Polyploid,Polyploid Cells,Polyploidies,Polyploids
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

R Schlegel, and T L Benjamin
March 1979, Cell,
R Schlegel, and T L Benjamin
January 1980, Cold Spring Harbor symposia on quantitative biology,
R Schlegel, and T L Benjamin
December 1982, Biochimica et biophysica acta,
R Schlegel, and T L Benjamin
April 1977, Virology,
R Schlegel, and T L Benjamin
January 1983, Archiv fur Geschwulstforschung,
R Schlegel, and T L Benjamin
December 1985, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!