Effects of progesterone on the estradiol-induced follicle-stimulating hormone (FSH) surge and FSH beta messenger ribonucleic acid in the rat. 1990

B Attardi, and T Fitzgerald
Department of Medicine, Montefiore Hospital, Pittsburgh, Pennsylvania 15213.

This study was designed to investigate the effects of progesterone on the estradiol (E2)-induced FSH surge and FSH beta messenger RNA (mRNA) using immature rat models developed previously to demonstrate inhibition or facilitation of the LH surge by progesterone. Twenty-eight day-old rats that received E2 implants at 0900 h had FSH surges about 1700 h on day 29 (32 h). In rats treated with E2 alone, serum FSH was 15.1 +/- 1.6 ng/ml at this time, while in those animals treated concurrently with E2 and progesterone, serum FSH was significantly suppressed (8.3 +/- 0.7 ng/ml, P less than 0.001). For demonstration of progesterone facilitation, rats were primed for 24 h with E2 before progesterone treatment. This led to premature and enhanced FSH secretion: at 1400 h on day 29 serum FSH was 45.5 +/- 2.7 ng/ml compared to 6.4 +/- 0.5 ng/ml in rats treated with E2 alone. To examine the effects of these dual actions of progesterone on FSH synthesis, steady state concentrations of FSH beta mRNA were measured by Northern analysis. FSH beta mRNA generally increased in parallel with FSH release. Levels of this mRNA were about 1.5-fold higher in rats undergoing E2-induced FSH surges than in rats in which the surge was blocked by progesterone. Also, at the onset of the progesterone-facilitated FSH surge, FSH beta mRNA was about 5-fold higher in animals treated with E2 and progesterone than in those treated with E2 only. On the morning after the FSH surge (48 h after E2 treatment) FSH beta mRNA was low to undetectable. In contrast, levels of FSH beta mRNA were 7- to 8-fold higher at this time in rats in which the surge was blocked by progesterone. Serum inhibin concentrations were significantly elevated (P less than 0.05) in animals treated with E2 alone for 32 h (3077 +/- 260 fmol/ml) or 48 h (2344 +/- 148 fmol/ml) compared to those treated with E2 and progesterone in the inhibition paradigm (2469 +/- 106, 1896 +/- 114 fmol/ml, respectively). After 32 h of E2 treatment in the facilitation paradigm, serum inhibin was comparable (P greater than 0.2) in rats treated for 8 h with blank implants (2592 +/- 168 fmol/ml) and those treated for 8 h with progesterone (2720 +/- 188 fmol/ml).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

B Attardi, and T Fitzgerald
July 1997, Biology of reproduction,
Copied contents to your clipboard!