Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. 2011

John M Pagano, and Carina C Clingman, and Sean P Ryder
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two complementary experimental methods, fluorescence polarization and fluorescence electrophoretic mobility shift assays, that enable the quantitative measurement of binding affinity. We also present two strategies for post-synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes. The approaches discussed here are efficient and sensitive, providing a safe and accessible alternative to the more commonly used radio-isotopic methods.

UI MeSH Term Description Entries
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005454 Fluorescence Polarization Measurement of the polarization of fluorescent light from solutions or microscopic specimens. It is used to provide information concerning molecular size, shape, and conformation, molecular anisotropy, electronic energy transfer, molecular interaction, including dye and coenzyme binding, and the antigen-antibody reaction. Anisotropy, Fluorescence,Fluorescence Anisotropy,Polarization, Fluorescence,Anisotropies, Fluorescence,Fluorescence Anisotropies,Fluorescence Polarizations,Polarizations, Fluorescence
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D024202 Electrophoretic Mobility Shift Assay An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded. Gelshift Analysis,Mobility Shift Assay,Band Shift Mobility Assay,Bandshift Mobility Assay,EMSA Electrophoretic Technique,Gel Retardation Assay,Gel Shift Analysis,Supershift Mobility Assay,Analyses, Gel Shift,Analysis, Gel Shift,Assay, Bandshift Mobility,Assay, Gel Retardation,Assay, Mobility Shift,Assay, Supershift Mobility,Assays, Bandshift Mobility,Assays, Gel Retardation,Assays, Mobility Shift,Assays, Supershift Mobility,Bandshift Mobility Assays,EMSA Electrophoretic Techniques,Electrophoretic Technique, EMSA,Electrophoretic Techniques, EMSA,Gel Retardation Assays,Gel Shift Analyses,Mobility Assay, Bandshift,Mobility Assay, Supershift,Mobility Assays, Bandshift,Mobility Assays, Supershift,Mobility Shift Assays,Supershift Mobility Assays,Technique, EMSA Electrophoretic,Techniques, EMSA Electrophoretic

Related Publications

John M Pagano, and Carina C Clingman, and Sean P Ryder
April 1984, Nucleic acids research,
John M Pagano, and Carina C Clingman, and Sean P Ryder
February 1998, Journal of photochemistry and photobiology. B, Biology,
John M Pagano, and Carina C Clingman, and Sean P Ryder
April 2012, Analytical and bioanalytical chemistry,
John M Pagano, and Carina C Clingman, and Sean P Ryder
November 2012, Applied spectroscopy,
John M Pagano, and Carina C Clingman, and Sean P Ryder
January 2008, Methods in enzymology,
John M Pagano, and Carina C Clingman, and Sean P Ryder
December 1995, Toxicology letters,
John M Pagano, and Carina C Clingman, and Sean P Ryder
July 2022, Methods and applications in fluorescence,
John M Pagano, and Carina C Clingman, and Sean P Ryder
August 2012, Methods (San Diego, Calif.),
John M Pagano, and Carina C Clingman, and Sean P Ryder
March 2017, Current protocols in cell biology,
John M Pagano, and Carina C Clingman, and Sean P Ryder
February 1995, Current opinion in structural biology,
Copied contents to your clipboard!