Properties of purine nucleoside phosphorylase (PNP) of mammalian and bacterial origin. 1990

A Bzowska, and E Kulikowska, and D Shugar
Department of Biophysics, University of Warsaw, Poland.

Purine nucleoside phosphorylase (PNP), from calf spleen, human erythrocytes and E. coli have been examined with regard to structural requirements of substrates and inhibitors. Kinetic parameters (Km, Vmax/Km) for a variety of N(1) and/or N(7)-methylated analogues of guanosine, inosine and adenosine have been evaluated for all three enzymes. The substrate and/or inhibitor properties of purine riboside, 1,6-dihydropurine riboside, some deazapurine nucleosides: 3-deaza- and 7-deazainosine, 1,3-dideazapurine riboside (ribobenzimidazole), and a variety of acyclonucleosides, have been determined with mammalian and bacterial enzymes. Overall results indicate distinct similarities of kinetic properties and structural requirements of the two mammalian enzymes, although there are some differences as well. The N(1) and O6 of the purine ring are necessary for substrate-inhibitor activity and constitute a binding site for the mammalian (but not the bacterial) enzymes. Moreover, nucleosides lacking the N(3) undergo phosphorolysis and those lacking N(7) are inhibitors (but not substrates). Methylation of the ring N(7) leads to two overlapping effects: labilization of the glycosidic bond, and impediment to protonation at this site by the enzyme, a postulated prerequisite for enzymatic phosphorolysis. It is proposed that a histidine interacts with N(1) as a donor and O6 as an acceptor. Alternatively N(1)-H and C(2)-NH2 may serve as donors for hydrogen bonds with a glutamate residue. The less specific E. coli enzyme phosphorolyses all purine ring modified nucleosides but 7-deazainosine which is only an inhibitor. On the other hand, the bacterial enzyme exhibits decreased activity towards N(7)-methylated nucleosides and lack of affinity for a majority of the tested acyclonucleoside inhibitors of the mammalian enzymes. The foregoing results underline the fundamental differences between mammalian and bacterial enzymes, including variations in the binding sites for the purine ring.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D011683 Purine-Nucleoside Phosphorylase An enzyme that catalyzes the reaction between a purine nucleoside and orthophosphate to form a free purine plus ribose-5-phosphate. EC 2.4.2.1. Inosine Phosphorylase,Nicotinamide Riboside Phosphorylase,Purine Nucleoside Phosphorylases,Nucleoside Phosphorylases, Purine,Phosphorylase, Inosine,Phosphorylase, Nicotinamide Riboside,Phosphorylase, Purine-Nucleoside,Phosphorylases, Purine Nucleoside,Purine Nucleoside Phosphorylase,Riboside Phosphorylase, Nicotinamide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

A Bzowska, and E Kulikowska, and D Shugar
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
A Bzowska, and E Kulikowska, and D Shugar
January 2003, Nihon rinsho. Japanese journal of clinical medicine,
A Bzowska, and E Kulikowska, and D Shugar
December 1996, Nihon rinsho. Japanese journal of clinical medicine,
A Bzowska, and E Kulikowska, and D Shugar
January 1998, Ryoikibetsu shokogun shirizu,
A Bzowska, and E Kulikowska, and D Shugar
January 2003, Nihon rinsho. Japanese journal of clinical medicine,
A Bzowska, and E Kulikowska, and D Shugar
December 1996, Nihon rinsho. Japanese journal of clinical medicine,
A Bzowska, and E Kulikowska, and D Shugar
January 1984, Advances in experimental medicine and biology,
A Bzowska, and E Kulikowska, and D Shugar
October 2008, Protein expression and purification,
A Bzowska, and E Kulikowska, and D Shugar
August 1987, Agents and actions,
Copied contents to your clipboard!