Radial component of CNS myelin: junctional subunit structure and supramolecular assembly. 1990

B Kosaras, and D A Kirschner
Neurology Research, Children's Hospital, Boston, MA 02115.

The radial component is a structural specialization within CNS myelin that is believed to stabilize the apposition of membranes in the internode. Previous observations on thin sections and freeze-fracture replicas show that this junctional complex consists of linear, particulate strands that run parallel to the nerve fibre axis and radially through the myelin sheath, but details on its molecular organization are lacking. The objective of our current study was to gain further insight into its arrangement and composition by examining its fine-structure and incidence in: myelin with known deficits in protein composition (e.g., shiverer, transgenic shiverer, myelin deficient and jimpy mutant mice); isolated CNS myelin, which has been shown by X-ray diffraction to be more stable than intact CNS myelin; and human white matter, in which this junctional complex has not yet been described. Our results confirm the localization and general appearance of the radial component as previously reported. In addition, we found that: (1) the radial component occurs abundantly in human CNS myelin where it has a complex subunit structure; (2) the constituent junctional unit of this structure is organized as a pair of globular domains (each approximately 40 A diameter) at the extracellular apposition which is linked by approximately 15 A diameter filaments extending through the bilayer to approximately 25 A globular domains in the adjacent cytoplasmic apposition; (3) the radial component is present with apparently normal structure in the sparse, compact myelin of murine mutants containing either different amounts of MBP or no PLP which indicates that neither of these proteins is necessary for junctional integrity; (4) the radial component is present in purified CNS myelin membranes which may account for the stability of these membranes; and (5) the radial component is structurally resistant to Triton, which suggests a method for its further biochemical characterization. Finally, from an analysis of images from tilted transverse and longitudinal sections, we have reconstructed a model of its three-dimensional, supramolecular organization.

UI MeSH Term Description Entries
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

B Kosaras, and D A Kirschner
December 1961, The Journal of biophysical and biochemical cytology,
B Kosaras, and D A Kirschner
March 1983, Brain research,
B Kosaras, and D A Kirschner
January 1981, Neuropathology and applied neurobiology,
B Kosaras, and D A Kirschner
September 2001, Medical electron microscopy : official journal of the Clinical Electron Microscopy Society of Japan,
B Kosaras, and D A Kirschner
January 1997, Neuron,
B Kosaras, and D A Kirschner
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
B Kosaras, and D A Kirschner
July 1982, Laboratory investigation; a journal of technical methods and pathology,
B Kosaras, and D A Kirschner
December 1997, Journal of neuroscience research,
B Kosaras, and D A Kirschner
January 1996, Journal of neurochemistry,
B Kosaras, and D A Kirschner
October 2011, Trends in cell biology,
Copied contents to your clipboard!