Molecular dynamics of ribosomal elongation factors G and Tu. 2011

Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.

Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009038 Motion Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity. Motions
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012346 RNA, Transfer, Amino Acyl Intermediates in protein biosynthesis. The compounds are formed from amino acids, ATP and transfer RNA, a reaction catalyzed by aminoacyl tRNA synthetase. They are key compounds in the genetic translation process. Amino Acyl tRNA,Transfer RNA, Amino Acyl,tRNA-Amino Acyl,Amino Acyl T RNA,Acyl tRNA, Amino,Acyl, tRNA-Amino,tRNA Amino Acyl,tRNA, Amino Acyl

Related Publications

Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
February 1978, Journal of biochemistry,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
February 1982, Journal of bacteriology,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
October 2002, Biochemistry,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
August 1978, FEBS letters,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
January 1984, Molecular & general genetics : MGG,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
February 1990, Biomedical science,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
February 1987, Biochimica et biophysica acta,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
April 2012, Biochemistry,
Katarzyna Kulczycka, and Maciej Długosz, and Joanna Trylska
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!