Interferon-gamma inhibits 1,25-dihydroxyvitamin D3-stimulated synthesis of bone GLA protein in rat osteosarcoma cells by a pretranslational mechanism. 1990

M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
Department of Medicine, Veterans Administration Medical Center, Atlanta, Georgia 30033.

Interferon-gamma (IFN) is produced by lymphocytes in areas of inflammation and connective tissue destruction. IFN inhibits collagen and DNA synthesis in cultured rat long bones and osteoblastic ROS 17/2.8 cells, suggesting that the periarticular loss of bone that occurs in inflammatory joint diseases may be due to IFN inhibition of bone formation. Since serum levels of bone gla protein (BGP) have been correlated with the bone formation rate, we studied the effect of IFN on production of this osteoblast-specific protein and steady state BGP messenger RNA (mRNA) levels in ROS 17/2.8 cells. RIA of BGP was done using an antibody raised against rat BGP peptide. BGP synthesis was stimulated with 10(-8) M 1,25-dihydroxyvitamin D3 24 h before and continuously after addition of recombinant rat IFN. IFN (100 U/ml) inhibited BGP secretion 52%, 78%, and 70% in the first, second, and third 24 h periods after IFN treatment, compared to control cells cultured with 1,25-dihydroxyvitamin D3 alone. The ED50 for IFN inhibition of BGP production was 3.3 U/ml (0.29 nM). Pulse labeling with [14C]leucine or [3H]proline during the last 4 h of culture revealed that IFN (3-100 U/ml) did not inhibit total protein secretion into the medium. The percent inhibition of BGP production by IFN was independent of media serum concentration or cell density. IFN (100 U/ml) decreased the steady state level of BGP mRNA as measured by Northern analysis using an oligomeric probe for rat BGP. The decrease in hybridization signal for BGP mRNA was detectable by 1 h after IFN exposure and continued to decline at 6 and 24 h. Treatment with cycloheximide (5 micrograms/ml) blocked the inhibitory effect of IFN on steady state levels of BGP mRNA. These results suggest that IFN may inhibit bone formation by selective inhibition of osteoblast matrix protein production. The mechanism of IFN inhibition of BGP production is, at least in part, pretranslational.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
April 1990, Calcified tissue international,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
August 1987, The Journal of biological chemistry,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
December 1980, The Journal of biological chemistry,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
December 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
June 1996, Veterinary immunology and immunopathology,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
January 1989, Molecular endocrinology (Baltimore, Md.),
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
August 1989, Archives of biochemistry and biophysics,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
January 1983, Archives of biochemistry and biophysics,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
May 1994, Molecular and cellular endocrinology,
M S Nanes, and J Rubin, and L Titus, and G N Hendy, and B D Catherwood
February 1987, Endocrinology,
Copied contents to your clipboard!