Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. 2011

Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. r.j.wanders@amc.uva.nl

Fatty acids (FAs) can be degraded via different mechanisms including α-, β- and ω-oxidation. In humans, a range of different genetic diseases has been identified in which either mitochondrial FA β-oxidation, peroxisomal FA β-oxidation or FA α-oxidation is impaired. Treatment options for most of these disorders are limited. This has prompted us to study FA ω-oxidation as a rescue pathway for these disorders, based on the notion that if the ω-oxidation of specific FAs could be upregulated one could reduce the accumulation of these FAs and the subsequent detrimental effects in the different groups of disorders. In this minireview, we describe our current state of knowledge in this area with special emphasis on Refsum disease and X-linked adrenoleukodystrophy.

UI MeSH Term Description Entries
D008052 Lipid Metabolism, Inborn Errors Errors in the metabolism of LIPIDS resulting from inborn genetic MUTATIONS that are heritable. Lipid Metabolism, Inborn Error
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
August 1978, Seikagaku. The Journal of Japanese Biochemical Society,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
January 2002, Annual review of physiology,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
December 2018, Annals of translational medicine,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
January 1989, The Journal of biological chemistry,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
September 1978, Archives of biochemistry and biophysics,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
October 2006, Expert opinion on therapeutic targets,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
June 2023, Nutrition, metabolism, and cardiovascular diseases : NMCD,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
June 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
September 2008, Seminars in pediatric neurology,
Ronald J A Wanders, and Jasper Komen, and Stephan Kemp
January 2013, Handbook of clinical neurology,
Copied contents to your clipboard!