Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections. 2011

Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
Department of Biological Structure and the National Primate Research Center, University of Washington, Seattle, Washington, USA.

Parallel processing of visual information begins at the first synapse in the retina between the photoreceptors and bipolar cells. Ten bipolar cell types have been previously described in the primate retina: one rod and nine cone bipolar types. In this paper, we describe an 11th type of bipolar cell identified in Golgi-stained macaque retinal whole mount and vertical section. Axonal stratification depth, in addition to dendritic and axonal morphology, distinguished the "giant" cell from all previously well-recognized bipolar cell types. The giant bipolar cell had a very large and sparsely branched dendritic tree and a relatively large axonal arbor that costratified with the DB4 bipolar cell near the center of the inner plexiform layer. The sparseness of the giant bipolar's dendritic arbor indicates that, like the blue cone bipolar, it does not contact all the cones in its dendritic field. Giant cells contacting the same cones as midget bipolar cells, which are known to contact single long-wavelength (L) or medium-wavelength (M) cones, demonstrate that the giant cell does not exclusively contact short-wavelength (S) cones and, therefore, is not a variant of the previously described blue cone bipolar. This conclusion is further supported by measurement of the cone contact spacing for the giant bipolar. The giant cell contacts an average of about half the cones in its dendritic field (mean ± S.D. = 52 ± 17.6%; n = 6), with a range of 27-82%. The dendrites from single or neighboring giant cells that converge onto the same cones suggest that the giant cell may selectively target a subset of cones with a highly variable local density, such as the L or M cones.

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell
D051245 Retinal Bipolar Cells INTERNEURONS of the vertebrate RETINA containing two processes. They receive inputs from the RETINAL PHOTORECEPTOR CELLS and send outputs to the RETINAL GANGLION CELLS. The bipolar cells also make lateral connections in the retina with the RETINAL HORIZONTAL CELLS and with the AMACRINE CELLS. Bipolar Cells, Retinal,Bipolar Cell, Retinal,Cell, Retinal Bipolar,Cells, Retinal Bipolar,Retinal Bipolar Cell

Related Publications

Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
April 1981, The Journal of comparative neurology,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
September 1993, Journal of neurocytology,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
June 2004, The Journal of comparative neurology,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
January 2000, Vision research,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
January 1991, Visual neuroscience,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
May 1997, Journal of neurocytology,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
April 1992, Visual neuroscience,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
February 1996, The Journal of comparative neurology,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
January 2021, Frontiers in cellular neuroscience,
Hannah R Joo, and Beth B Peterson, and Toni J Haun, and Dennis M Dacey
January 1989, Visual neuroscience,
Copied contents to your clipboard!