Treatment of high-risk neuroblastoma with anti-GD2 antibodies. 2010

Victoria Castel, and Vanessa Segura, and Adela Cañete
Grupo de Neuroblastoma SEHOP, Unidad de Oncología Pediátrica, Hospital Universitario La Fe, Valencia, Spain. castel_vic@gva.es

Anticancer monoclonal antibodies (mAbs) targeting specific antigens on the tumour surface are increasingly being applied in cancer treatment. Potential advantages include long half-life, low toxicity, high affinity and specificity. In order to develop novel immune therapies for high-risk cancers, finding tumour targets that are not widely shared by normal cells is a goal. GD2-disialoganglioside is one of them. It is expressed on the surface of a variety of tumours with no curative therapies for patients with advanced disease. In childhood, neuroblastoma is the most common GD2-expressing tumour. Because of this tumour-selective expression, it is an attractive target for tumour-specific therapies such as antibody therapy. Over the last two decades, several anti-GD2 antibodies have been developed. To reduce both toxicity and development of human anti-mouse antibodies (HAMA), research efforts have primarily focused on exploring anti-GD2 antibodies that substitute mouse components by human ones. This review will examine antibodies currently undergoing clinical testing as well as the most recent advances to improve antibody therapy for patients with high-risk neuroblastoma.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D012306 Risk The probability that an event will occur. It encompasses a variety of measures of the probability of a generally unfavorable outcome. Relative Risk,Relative Risks,Risk, Relative,Risks,Risks, Relative
D058990 Molecular Targeted Therapy Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease. Targeted Molecular Therapy,Molecular Targeted Therapies,Molecular Therapy, Targeted,Targeted Molecular Therapies,Targeted Therapy, Molecular,Therapy, Molecular Targeted,Therapy, Targeted Molecular

Related Publications

Victoria Castel, and Vanessa Segura, and Adela Cañete
December 2019, Medecine sciences : M/S,
Victoria Castel, and Vanessa Segura, and Adela Cañete
April 2019, Journal of pediatric hematology/oncology,
Victoria Castel, and Vanessa Segura, and Adela Cañete
January 2020, Frontiers in oncology,
Victoria Castel, and Vanessa Segura, and Adela Cañete
January 2023, International journal of cancer,
Victoria Castel, and Vanessa Segura, and Adela Cañete
February 2022, Biomolecules,
Victoria Castel, and Vanessa Segura, and Adela Cañete
May 2016, The Annals of pharmacotherapy,
Victoria Castel, and Vanessa Segura, and Adela Cañete
November 2014, Cancer chemotherapy and pharmacology,
Victoria Castel, and Vanessa Segura, and Adela Cañete
January 2010, Drugs of the future,
Copied contents to your clipboard!