Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. 2011

Britta Bartelt Kirbach, and Nikola Golenhofen
Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany.

The so-called stress response involving up-regulation of heat shock proteins (Hsps) is a powerful mechanism of cells to deal with harmful conditions to which they are exposed throughout life, such as hyperthermia, hypoxia, or oxidative stress. Some members of the group of small Hsps (sHsps) seem to play a neuroprotective role in the brain. Here we analyzed the expression of all 11 sHsps in the rat brain by using RNA in situ hybridization and quantitative real-time RT-PCR. Additionally, we investigated sHsps in cultured neurons exposed to heat shock. We found seven sHsps to be expressed in the rat brain, with HspB5 (αB-crystallin), HspB6 (Hsp20), and HspB11 (Hsp16.2) showing the highest expression levels (4-24% of reference genes) followed by HspB1 (Hsp25) and HspB8 (Hsp22; 0.1-2% of reference genes), all being widely expressed in the brain areas investigated. HspB2 (MKBP) and HspB3, however, showed selective expression in only some regions (B2: cortex and hippocampus, B3: cortex and cerebellum). Whereas HspB5 was expressed mainly in the white matter, HspB6 showed the greatest expression in the cerebellar cortex, and HspB11 was widely distributed over the whole brain. In cultured hippocampal neurons, heat shock led to an increase of HspB1 and HspB8 mRNA and additionally HspB5 protein. Our data indicate that the sHsps induced by heat shock, HspB1, B5, and B8, might be especially involved in neuroprotection under stress conditions. The other sHsps showing constant neuronal expression may play a constitutive role or may be up-regulated and important in types of stresses other than heat shock.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D050888 Heat-Shock Proteins, Small A family of low molecular weight heat-shock proteins that can serve as MOLECULAR CHAPERONES. Small Heat-Shock Protein,Small Heat-Shock Proteins,Small HSP Proteins,HSP Proteins, Small,Heat Shock Proteins, Small,Heat-Shock Protein, Small,Protein, Small Heat-Shock,Small Heat Shock Protein,Small Heat Shock Proteins

Related Publications

Britta Bartelt Kirbach, and Nikola Golenhofen
December 2010, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
Britta Bartelt Kirbach, and Nikola Golenhofen
September 2014, Archives of biochemistry and biophysics,
Britta Bartelt Kirbach, and Nikola Golenhofen
January 2005, Transplantation proceedings,
Britta Bartelt Kirbach, and Nikola Golenhofen
February 2000, Journal of the American Society of Nephrology : JASN,
Britta Bartelt Kirbach, and Nikola Golenhofen
February 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Britta Bartelt Kirbach, and Nikola Golenhofen
October 1990, Neuroscience letters,
Britta Bartelt Kirbach, and Nikola Golenhofen
January 1992, The Journal of physiology,
Britta Bartelt Kirbach, and Nikola Golenhofen
November 1996, Brain research,
Copied contents to your clipboard!