Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. 1990

J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
Department of Physiology, University of South Alabama, College of Medicine, Mobile 36688.

Mechanical ventilation with high peak airway pressures (Paw) has been shown to induce pulmonary edema in animal experiments, but the relative contributions of transvascular filtration pressure and microvascular permeability are unclear. Therefore, we examined the effects of positive-pressure ventilation on two groups of open-chest dogs ventilated for 30 min with a peak Paw of 21.8 +/- 2.3 cm H2O (Low Paw) or 64.3 +/- 3.5 cm H2O (High Paw). No hemodynamic changes were observed in the Low Paw group during ventilation, but mean pulmonary artery pressure (Ppa) increased by 9.9 cm H2O, peak inspiratory Ppa by 24.6 cm H2O, and estimated mean microvascular pressure by 12.5 cm H2O during High Paw ventilation. During the same period, lung lymph flow increased by 435% in the High Paw and 35% in the Low Paw groups, and the terminal extravascular lung water/blood-free dry weight ratios were 5.65 +/- 0.27 and 4.43 +/- 0.13 g/g, respectively, for the two groups. Lung lymph protein clearances and minimal lymph/plasma ratios of total protein were significantly higher (p less than 0.05) after 2 h of increased left atrial pressure (PLA) in the High Paw group versus the Low Paw group, which indicates a significant increase in microvascular permeability. Lymph prostacyclin concentration in pulmonary lymph, measured as the stable metabolite 6-0-PGF1 alpha, was increased significantly by 70 to 150% from baseline (p less than 0.05) in both groups during the periods of increased Paw and increased PLA, but it was not significantly different between the groups.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008196 Lymph The interstitial fluid that is in the LYMPHATIC SYSTEM. Lymphs
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013928 Thromboxane A2 An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS). Rabbit Aorta Contracting Substance,A2, Thromboxane

Related Publications

J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
December 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
July 1983, The Annals of thoracic surgery,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
January 1998, Masui. The Japanese journal of anesthesiology,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
June 1993, Journal of applied physiology (Bethesda, Md. : 1985),
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
January 1981, Annual review of medicine,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
March 1989, Journal of applied physiology (Bethesda, Md. : 1985),
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
November 1975, Circulation research,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
November 1997, American journal of respiratory and critical care medicine,
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
January 1986, Journal of applied physiology (Bethesda, Md. : 1985),
J C Parker, and L A Hernandez, and G L Longenecker, and K Peevy, and W Johnson
January 2013, Journal of pediatric orthopedics,
Copied contents to your clipboard!