Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. 1990

L Hou, and F Lanni, and K Luby-Phelps
Center for Fluorescence Research in Biomedical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

We have previously reported that self-diffusion of inert tracer particles in the cytoplasm of living Swiss 3T3 cells is hindered in a size-dependent manner (Luby-Phelps, K., D.L. Taylor, and F. Lanni. 1986. J. Cell Biol. 102:2015-2022; Luby-Phelps, K., P.E. Castle, D.L. Taylor, and F. Lanni. 1987. Proc Natl. Acad. Sci. USA. 84:4910-4913). Lacking a theory that completely explains our data, we are attempting to understand the molecular architecture responsible for this phenomenon by studying tracer diffusion in simple, reconstituted model systems. This report contains our findings on tracer diffusion in concentrated solutions of Ficoll 70 or Ficoll 400, in solutions of entangled F-actin filaments, and in solutions of entangled F-actin containing a background of concentrated Ficoll particles or concentrated bovine serum albumin (BSA). A series of size-fractionated fluorescein-Ficolls were used as tracer particles. By fluorescence recovery after photobleaching (FRAP), we obtained the mean diffusion coefficients in a dilute, aqueous reference phase (Do), the mean diffusion coefficients in the model matrices (D), and the mean hydrodynamic radii (RH) for selected tracer fractions. For each model matrix, the results were compared with similar data obtained from living cells. As in concentrated solutions of globular proteins (Luby-Phelps et al., 1987), D/Do was not significantly size-dependent in concentrated solutions of Ficoll 400 or Ficoll 70. In contrast, D/Do decreased monotonically with increasing RH in solutions of F-actin ranging in concentration from 1 to 12 mg/ml. This size dependence was most pronounced at higher F-actin concentrations. However, the shape of the curve and the extrapolated value of D/Do in the limit, RH----O did not closely resemble the cellular data for tracers in the same size range (3 less than RH less than 30 nm). In mixtures of F-actin and Ficoll or F-actin and BSA, D/Do was well approximated by D/Do for the same concentration of F-actin alone multiplied by D/Do for the same concentrations of Ficoll or BSA alone. Based on these results, it is possible to model the submicroscopic architecture of cytoplasm in living cells as a densely entangled filament network (perhaps made up of F-actin and other filamentous structures) interpenetrated by a fluid phase crowded with globular macromolecules, which in cytoplasm would be primarily proteins.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D005362 Ficoll A sucrose polymer of high molecular weight.
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates

Related Publications

L Hou, and F Lanni, and K Luby-Phelps
November 1996, Biophysical journal,
L Hou, and F Lanni, and K Luby-Phelps
December 2002, Physical review letters,
L Hou, and F Lanni, and K Luby-Phelps
August 2001, Physical review. E, Statistical, nonlinear, and soft matter physics,
L Hou, and F Lanni, and K Luby-Phelps
November 2023, Physical review. E,
L Hou, and F Lanni, and K Luby-Phelps
August 1991, Physical review. B, Condensed matter,
L Hou, and F Lanni, and K Luby-Phelps
April 2007, Neuroscience research,
L Hou, and F Lanni, and K Luby-Phelps
December 1995, The American journal of physiology,
L Hou, and F Lanni, and K Luby-Phelps
November 2015, The Journal of chemical physics,
L Hou, and F Lanni, and K Luby-Phelps
July 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!