Prompt heat-shock and heat-shifted proteins associated with the nuclear matrix-intermediate filament scaffold in Drosophila melanogaster cells. 1990

D A Ornelles, and S Penman
Department of Biology, Princeton University, New Jersey 08544.

Elevated temperatures induced the synthesis of several new proteins in Drosophila melanogaster cells. Besides the conventional heat shock (HS) proteins, another set of temperature-induced proteins has been found. These latter resemble the prompt HS proteins of mammalian cells. The prompt HS proteins of Drosophila differ from the well-known conventional HS proteins in the following properties: (1) synthesis of the prompt HS proteins is insensitive to the transcription inhibitor actinomycin D, which blocks the appearance of conventional HS proteins; (2) induction of the prompt HS proteins requires a significantly higher temperature than conventional HS proteins; (3) prompt HS proteins associate strictly with the nuclear matrix-intermediate filament complex (NM-IF), while the conventional HS proteins are found in all subcellular fractions; (4) prompt HS proteins of Drosophila are induced by high temperature alone while the conventional HS proteins are also produced by a variety of stress conditions. Resinless-section electron micrographs show an altered nuclear matrix morphology in heat-shocked cells. The nuclear matrix fibers are altered in spatial distribution and have much additional electron-dense material. This added material probably reflects the soluble proteins shifted into the nuclear matrix at high temperature. The prompt HS proteins can be distinguished clearly from heat-shifted proteins by several criteria. Also, the prompt HS proteins are distinct from the heat-insensitive viral proteins of a persistent virus (HPS-1).

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015180 Electrophoresis, Gel, Two-Dimensional Electrophoresis in which a second perpendicular electrophoretic transport is performed on the separate components resulting from the first electrophoresis. This technique is usually performed on polyacrylamide gels. Gel Electrophoresis, Two-Dimensional,Polyacrylamide Gel Electrophoresis, Two-Dimensional,2-D Gel Electrophoresis,2-D Polyacrylamide Gel Electrophoresis,2D Gel Electrophoresis,2D PAGE,2D Polyacrylamide Gel Electrophoresis,Electrophoresis, Gel, 2-D,Electrophoresis, Gel, 2D,Electrophoresis, Gel, Two Dimensional,Polyacrylamide Gel Electrophoresis, 2-D,Polyacrylamide Gel Electrophoresis, 2D,Two Dimensional Gel Electrophoresis,2 D Gel Electrophoresis,2 D Polyacrylamide Gel Electrophoresis,Electrophoresis, 2-D Gel,Electrophoresis, 2D Gel,Electrophoresis, Two-Dimensional Gel,Gel Electrophoresis, 2-D,Gel Electrophoresis, 2D,Gel Electrophoresis, Two Dimensional,PAGE, 2D,Polyacrylamide Gel Electrophoresis, 2 D,Polyacrylamide Gel Electrophoresis, Two Dimensional,Two-Dimensional Gel Electrophoresis
D015530 Nuclear Matrix The residual framework structure of the CELL NUCLEUS that maintains many of the overall architectural features of the cell nucleus including the nuclear lamina with NUCLEAR PORE complex structures, residual CELL NUCLEOLI and an extensive fibrogranular structure in the nuclear interior. (Advan. Enzyme Regul. 2002; 42:39-52) Nuclear Scaffold,Nucleoskeleton,Matrices, Nuclear,Matrix, Nuclear,Nuclear Matrices,Nuclear Scaffolds,Nucleoskeletons,Scaffold, Nuclear,Scaffolds, Nuclear

Related Publications

D A Ornelles, and S Penman
August 1983, Proceedings of the National Academy of Sciences of the United States of America,
D A Ornelles, and S Penman
October 1981, The Journal of cell biology,
D A Ornelles, and S Penman
March 1991, Shi yan sheng wu xue bao,
D A Ornelles, and S Penman
October 2003, Seminars in cell & developmental biology,
D A Ornelles, and S Penman
November 1996, Journal of cellular biochemistry,
D A Ornelles, and S Penman
January 1983, Acta biochimica Polonica,
Copied contents to your clipboard!