Growth hormone-releasing hormone messenger ribonucleic acid in the hypothalamus of the adult male rat is increased by testosterone. 1990

P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
Department of Obstetrics and Gynecology, University of Washington, Seattle 98195.

Since intact adult male rats have higher GH pulse amplitude than do castrated animals and since GH-releasing hormone (GHRH) secretion is predominantly responsible for the production of these GH pulses, we hypothesized that testosterone stimulates GHRH synthesis in neurons of the hypothalamus. To test this hypothesis, we compared GHRH mRNA content in individual neurons of the arcuate (ARC) and ventromedial (VMH) nuclei among groups of intact (n = 3), castrated (n = 5), and castrated testosterone-replaced (n = 5) adult male rats. Cellular GHRH mRNA content was measured by using semiquantitative in situ hybridization with an 35S-labeled cRNA probe complementary to the coding sequence of rat GHRH mRNA. Castration resulted in an approximately 35% decline in GHRH mRNA signal relative to that in intact animals in both the ARC (P less than 0.005) and VMH (P less than 0.005). Replacement with testosterone at the time of castration completely prevented the decline in both areas. Testosterone can exert effects either through activation of the androgen receptor directly or through aromatization to estradiol; therefore, we also examined the effects on GHRH mRNA of replacement with 17 beta-estradiol (n = 5) or dihydrotestosterone (DHT), a nonaromatizable androgen (n = 4). Estradiol had no effect on the castration-induced decline in GHRH mRNA in either the ARC or VMH. In contrast, DHT partially prevented the postcastration decline in GHRH in the ARC (P less than 0.005), while having no statistically significant effect on GHRH mRNA in the VMH. These results clearly indicate that testosterone stimulates expression of GHRH mRNA in neurons of the hypothalamus. Furthermore, the failure of estradiol to substitute for testosterone and the ability of DHT to substantially support GHRH mRNA suggest that testosterone exerts its effects on GHRH gene expression predominantly through direct activation of the androgen receptor.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001111 Arcuate Nucleus of Hypothalamus A nucleus located in the middle hypothalamus in the most ventral part of the THIRD VENTRICLE near the entrance of the infundibular recess. Its small cells are in close contact with the EPENDYMA. Arcuate Nucleus,Infundibular Nucleus,Hypothalamus Arcuate Nucleus,Nucleus, Arcuate,Nucleus, Infundibular
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
November 1990, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
September 1993, Brain research,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
August 1990, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
December 1996, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
June 1997, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
January 1995, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
March 1992, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
March 1994, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
April 1996, Endocrinology,
P Zeitler, and J Argente, and J A Chowen-Breed, and D K Clifton, and R A Steiner
December 1996, Brain research,
Copied contents to your clipboard!