Compartmentalization of low molecular mass GTP-binding proteins among neutrophil secretory granules. 1990

D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
Pulmonary Center, Boston University School of Medicine, MA 02118.

Neutrophils contain several distinct classes of secretory granules that may sequentially fuse with the phagosome after the ingestion of particulates, or that may be differentially exocytosed after cellular activation with soluble stimuli. The exocytosis of neutrophil secretory granules has been shown to be GTP-dependent at a step distal to activation of the transductional G proteins. Inasmuch as ras-related low molecular mass GTP-binding proteins have been shown to play regulatory roles in vesicle sorting in the secretory pathway in yeast, the differential mobilization of neutrophil granules might be regulated by distinct GTP-binding proteins. We therefore explored the distribution and identity of low molecular mass GTP-binding proteins in neutrophil secretory granules and other subcellular fractions. After lysis by nitrogen cavitation, four highly resolved fractions were harvested from discontinuous Percoll gradients: a microsomal fraction enriched for plasma membranes, specific granules, primary granules, and cytosol. At least seven bands of distinct Mr were detected by probing protein blots with [32P]GTP. Microsomes contained a prominent GTP-binding band at 26 kDa and weaker ones at 24 and 22.5 kDa; specific granules contained bands at 26, 24, 22, and 20 kDa; primary granules showed bands at 24 and 23 kDa; cytosol showed strong bands at 23.5 and 19 kDa and a weak band at 26 kDa. Antiserum against ADP-ribosylation factor reacted strongly with the 19-kDa band in cytosol but with none of the membrane fractions. None of these proteins was recognized by antibodies against ras or against Sec4p. Botulinum exoenzyme C3 labeled bands of molecular mass 20 and 21 kDa in cytosol and microsomes that have distinct mobilities from all the blotted [32P]GTP-binding proteins. The highly compartmentalized subcellular distribution of the blotted [32P]GTP-binding proteins in neutrophils is consistent with a regulatory role in the differential mobilization of granule compartments during cellular activation.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate

Related Publications

D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
April 1993, Journal of molecular and cellular cardiology,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
March 1989, FEBS letters,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
January 1991, The Journal of biological chemistry,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
September 2001, International journal of medical microbiology : IJMM,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
April 1989, FEBS letters,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
December 1995, Trends in cell biology,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
February 1990, The Journal of biological chemistry,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
October 1991, FEBS letters,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
February 1992, The American journal of physiology,
D Dexter, and J B Rubins, and E C Manning, and L Khachatrian, and B F Dickey
March 1991, Trends in cardiovascular medicine,
Copied contents to your clipboard!