Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation. 2011

Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
Department of Biochemistry and Molecular Biology, University of Barcelona, (associated to CSIC, IBUB, IDIBAPS, XRQTC), 08028 Barcelona, Spain. pde_atauri@ub.edu

Metabolic adaptations are associated with changes in enzyme activities. These adaptations are characterized by patterns of positive and negative changes in metabolic fluxes and concentrations of intermediate metabolites. Knowledge of the mechanism and parameters governing enzyme kinetics is rarely available. However, the signs-increases or decreases-of many of these changes can be predicted using the signs of metabolic control coefficients. These signs require the only knowledge of the structure of the metabolic network and a limited qualitative knowledge of the regulatory dependences, which is widely available for carbon metabolism. Here, as a case study, we identified control coefficients with fixed signs in order to predict the pattern of changes in key enzyme activities which can explain the observed changes in fluxes and concentrations underlying the metabolic adaptations in oncogenic K-ras transformation in NIH-3T3 cells. The fixed signs of control coefficients indicate that metabolic changes following the oncogenic transformation-increased glycolysis and oxidative branch of the pentose-phosphate pathway, and decreased concentration in sugar-phosphates-could be associated with increases in activity for glucose-6-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenase, and decrease for transketolase. These predictions were validated experimentally by measuring specific activities. We conclude that predictions based on fixed signs of control coefficients are a very robust tool for the identification of changes in enzyme activities that can explain observed metabolic adaptations in carbon metabolism.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D000220 Adaptation, Biological Changes in biological features that help an organism cope with its ENVIRONMENT. These changes include physiological (ADAPTATION, PHYSIOLOGICAL), phenotypic and genetic changes. Adaptation, Biologic,Biological Adaptation,Biologic Adaptation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic

Related Publications

Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
October 1996, Journal of theoretical biology,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
August 2006, Oncogene,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
October 2018, PLoS genetics,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
November 2006, Oncogene,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
April 2021, Cell death discovery,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
September 2012, Journal of proteomics,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
August 1998, Journal of theoretical biology,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
February 2012, Cell research,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
March 1994, The Biochemical journal,
Pedro de Atauri, and Adrian Benito, and Pedro Vizán, and Miriam Zanuy, and Ramón Mangues, and Silvia Marín, and Marta Cascante
July 1990, European journal of biochemistry,
Copied contents to your clipboard!