Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. 2011

Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.

Adipocyte differentiation is a key process in determining the number of mature adipocytes in the development of obesity. Here, we examined the function of curcumin, a dietary polyphenol found in turmeric, and its underlying mechanisms in adipocyte differentiation. Our study reveals that curcumin exerts an anti-adipogenic function both in 3T3-L1 murine cells and in human primary preadipocytes as determined by intracellular lipid accumulation assay, quantitative analysis of adipocyte marker gene expression and a noninvasive multimodal Coherent Anti-Stokes Raman Scattering (CARS) microscopic analysis of intracellular curcumin. The inhibitory action of curcumin was largely limited to the early stage of adipocyte differentiation, where curcumin was found to inhibit mitotic clonal expansion (MCE) process as evidenced by impaired proliferation, cell-cycle entry into S phase and the S to G2/M phase transition of confluent cells, and levels of cell cycle-regulating proteins with no significant effect on cell viability and cytotoxicity. This, in turn, resulted in inhibition of mRNA levels of early adipogenic transcription factors, particularly Krüppel-like factor 5 (KLF5), CCAAT/enhancer binding proteinα (C/EBPα) and peroxisome proliferator-activated receptorγ (PPARγ), in the early stage of adipocyte differentiation. Supplementation with rosiglitazone, a PPARγ ligand, during the early stage of adipocyte differentiation partially rescued curcumin-inhibited adipocyte differentiation. Collectively, our results show that curcumin is an anti-adipogenic dietary bioactive component largely involved in the modulation of the MCE process during the early stage of adipocyte differentiation.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077154 Rosiglitazone A thiazolidinedione that functions as a selective agonist for PPAR GAMMA. It improves INSULIN SENSITIVITY in adipose tissue, skeletal muscle, and the liver of patients with TYPE 2 DIABETES MELLITUS. 5-((4-(2-Methyl-2-(pyridinylamino)ethoxy)phenyl)methyl)-2,4-thiazolidinedione-2-butenedioate,Avandia,BRL 49653,BRL-49653,BRL49653,Rosiglitazone Maleate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D045162 Thiazolidinediones THIAZOLES with two keto oxygens. Members are insulin-sensitizing agents which overcome INSULIN RESISTANCE by activation of the peroxisome proliferator activated receptor gamma (PPAR-gamma). Glitazones

Related Publications

Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
December 2021, Cell proliferation,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
March 2017, Cell reports,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
April 2024, Biochimica et biophysica acta. Molecular and cell biology of lipids,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
April 2009, The Journal of biological chemistry,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
November 2016, BioFactors (Oxford, England),
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
April 2014, Life sciences,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
January 2021, Journal of natural medicines,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
August 2018, Phytotherapy research : PTR,
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
July 2012, Obesity (Silver Spring, Md.),
Choon Young Kim, and Thuc T Le, and Chihyu Chen, and Ji-Xin Cheng, and Kee-Hong Kim
November 2013, Archives of pharmacal research,
Copied contents to your clipboard!