Gene induction by interferons: functional complementation between trans-acting factors induced by alpha interferon and gamma interferon. 1990

S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195-5069.

HeLaM is a variant cell line in which the transcriptional induction of many genes by alpha interferon has special characteristics (Tiwari et al., Mol. Cell. Biol. 8:4289-4294, 1988). The same characteristics were also displayed for induced transcription of a permanently transfected chimeric gene containing the interferon-stimulated response element of gene 561. For understanding the molecular basis of the special requirements of HeLaM cells, an analysis of the interferon-stimulated gene factors (ISGF) was undertaken. By using gel shift assays, it was shown that the activation of ISGF3 by alpha interferon treatment of HeLaM cells had characteristics identical to those of induced transcription: inhibition by 2-aminopurine and the need for ongoing protein synthesis which was obviated by pretreating the cells with gamma interferon. Upon mixing in vitro the cytoplasmic fraction of gamma interferon-treated HeLaM cells with that of cells treated with alpha interferon and cycloheximide, active ISGF3 was reconstituted, presumably through complementation of two components, ISGF3 gamma and ISGF3 alpha, present in the two respective fractions. Because, unlike other cells, untreated HeLaM cells did not contain detectable levels of either component, we could induce them individually and study their independent properties. Induction of ISGF3 gamma but not of ISGF3 alpha needed ongoing protein synthesis and was blocked by 2-aminopurine. Once induced, ISGF3 gamma was active for 24 h and was present in both the nuclear and cytoplasmic fractions. Activated ISGF3 alpha, on the other hand, did not translocate to the nucleus in the absence of ISGF3 gamma, and in the cytoplasm its activity decayed within 2 h of its activation. In reference to our working model, all of the above observations indicate that ISGF3 gamma is the product of signal 1 and ISGF3 alpha is the product of signal 2.

UI MeSH Term Description Entries
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
November 1990, Nucleic acids research,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
April 1988, Journal of immunology (Baltimore, Md. : 1950),
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
December 1985, European journal of biochemistry,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
February 1983, Cellular immunology,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
January 1992, Hormone research,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
January 1991, Molecular and cellular biology,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
January 1985, Voprosy virusologii,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
May 2001, Current protocols in immunology,
S K Bandyopadhyay, and D V Kalvakolanu, and G C Sen
January 1985, Acta microbiologica Hungarica,
Copied contents to your clipboard!