Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. 1990

K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
Department of Psychiatry, University of Utah School of Medicine, Salt Lake City 84112.

Clinical studies suggest that deprenyl may retard the progression of Parkinson's disease, an effect that may be related to its monoamine oxidase (MAO) inhibiting properties. Deprenyl also protects against the neurodegenerative effects of the noradrenergic toxin DSP-4. In this study we investigated the role of MAO B inhibition in this protection. C57BL/6 mice were given DSP-4 (50 mg/kg i.p.) 1 h. 24 h or 4 days after the administration of deprenyl (10 mg/kg i.p.) or the selective MAO B inhibitor MDL 72974 (1.25 mg/kg), and then killed 1 week later for assay of hippocampal norepinephrine. The MAO B inhibiting effects of deprenyl or MDL 72974 were also determined after these same intervals of time. Deprenyl and MDL 72974 produced comparable degrees of enzyme inhibition 1 h (greater than 95%), 24 h (greater than 90%) or 4 days (greater than 70%) after their administration. Given 1 h before, deprenyl totally blocked the norepinephrine-depleting effects of DSP-4, but this protection declined sharply when 24 h or 4 days was allowed to elapse between deprenyl and DSP-4 administration. MDL 72974 failed to protect at any time point. In vitro, we detected no activity using DSP-4 as a substrate for MAO. These findings suggest that the ability of deprenyl to protect against DSP-4-induced neuronal degeneration may not depend on its MAO B inhibiting properties.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase
D009422 Nervous System Diseases Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle. Neurologic Disorders,Nervous System Disorders,Neurological Disorders,Disease, Nervous System,Diseases, Nervous System,Disorder, Nervous System,Disorder, Neurologic,Disorder, Neurological,Disorders, Nervous System,Disorders, Neurologic,Disorders, Neurological,Nervous System Disease,Nervous System Disorder,Neurologic Disorder,Neurological Disorder
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002082 Butylamines Isomeric amines of butane, where an amino group replaces a hydrogen on one of the four carbons. They include isobutylamine, n-Butylamine, sec-Butylamine, and tert-Butylamine.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000498 Allyl Compounds Alkenes with the general formula H2C Compounds, Allyl
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
March 1997, Neuroscience letters,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
September 1987, European journal of pharmacology,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
April 1995, Psychopharmacology,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
July 1994, Brain research,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
January 1994, Journal of neural transmission. Supplementum,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
January 1995, Brain research bulletin,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
April 1995, The Journal of pharmacy and pharmacology,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
December 1995, Neurochemical research,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
October 2002, Journal of chromatographic science,
K T Finnegan, and J J Skratt, and I Irwin, and L E DeLanney, and J W Langston
August 2006, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!