Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. 1990

H Kuhn, and J Belkner, and R Wiesner, and A R Brash
Institute of Biochemistry, School of Medicine (Charité), Humboldt University, Berlin, East Germany.

We find that the reticulocyte lipoxygenase can oxygenate rat liver mitochondrial membranes, beef heart submitochondrial particles, rat liver endoplasmic membranes, and erythrocyte plasma membranes (inside-out and right side-out ghosts) without prior action of a phospholipase. After alkaline hydrolysis of the ester lipids, the main products were identified as 15S-hydro(pero)xy-5Z,8Z,11Z,13E-eicosatetr aenoic acid, 17S-hydro(pero)xy-4Z,7Z,10Z,13Z,15E, 19Z,-docosahexaenoic acid, 13S-hydro(pero)xy-9Z,11E-octadecadienoic acid, 9(S/R)-hydro(pero)xy-10E,12Z-octadecadienoic acid as well as the two all-E hydro(pero)xy octadecadienoic acid isomers. At low membrane concentrations (1 mg of protein/ml), the enzyme maintains a high stereospecificity for the S-configuration, but at higher concentrations (20 mg/ml), the products were virtually racemic. Addition of the antioxidant 2,6-ditert-butyl-p-cresol counteracted this tendency to lose stereospecificity. During these enzyme-catalyzed reactions, substantially more oxygen is consumed than can be accounted for as the hydro(pero)xy products. This discrepancy is due to secondary reactions which lead to the decomposition of the primary oxygenation products, the hydroperoxy lipids, and to oxidative modifications of membrane proteins. These data indicate that the reticulocyte lipoxygenase can oxygenate polyenoic fatty acids in various types of biological membrane and that the oxidative modifications are not restricted to the membrane lipids. The results are discussed in terms of the proposed role of the enzyme in the breakdown of mitochondria and other intracellular organelles during the maturation of red blood cells.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008084 Lipoxygenase An enzyme of the oxidoreductase class primarily found in PLANTS. It catalyzes reactions between linoleate and other fatty acids and oxygen to form hydroperoxy-fatty acid derivatives. Lipoxidase,Linoleate-Oxygen Oxidoreductase,Lipoxygenase-1,Lipoxygenase-2,Linoleate Oxygen Oxidoreductase,Lipoxygenase 1,Lipoxygenase 2,Oxidoreductase, Linoleate-Oxygen
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

H Kuhn, and J Belkner, and R Wiesner, and A R Brash
January 1990, Biomedica biochimica acta,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
December 1987, European journal of biochemistry,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
February 1991, FEBS letters,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
November 1986, FEBS letters,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
November 1989, Biochimica et biophysica acta,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
January 1990, Biomedica biochimica acta,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
June 1990, Archives of biochemistry and biophysics,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
November 1984, FEBS letters,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
July 1986, FEBS letters,
H Kuhn, and J Belkner, and R Wiesner, and A R Brash
July 1990, European journal of biochemistry,
Copied contents to your clipboard!