Size heterogeneity, phosphorylation and transmembrane organisation of desmosomal glycoproteins 2 and 3 (desmocollins) in MDCK cells. 1990

E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
Cancer Research Campaign Medical Oncology Unit, University of Southampton, UK.

Metabolic labelling with [35S]methionine and immunoprecipitation with specific antibodies to bovine desmosomal glycoproteins 2 and 3 (dg2 and dg3: desmocollins) reveals a triplet of polypeptides of Mr 115,000, 107,000 and 104,000 in MDCK cells. Tunicamycin treatment shows that this heterogeneity does not arise through differential N-linked glycosylation. Under conditions in which cells are actively forming desmosomes, the largest polypeptide, dg2, becomes phosphorylated on serine, but the two smaller polypeptides, dg3a and 3b, do not. Controlled trypsinisation of intact cells yields three membrane-protected fragments (Mr 28,000, 24,000 and 23,000) derived from these glycoproteins. The largest of these fragments is phosphorylated but the two smaller fragments are not. A monoclonal antibody to bovine dg2 and dg3 stains MDCK cells cytoplasmically. In immunoblotting of MDCK cells the monoclonal antibody recognises dg2 strongly and shows a weaker reaction with a band of lower Mr corresponding to dg3a. It also recognises the immunoprecipitated 28,000 Mr fragment from trypsinised cells and a smaller fragment of 24,000 Mr. The simplest interpretation of these data is that all three glycoproteins have a transmembrane configuration with a single membrane-spanning domain, and show heterogeneity of size and phosphorylation in their cytoplasmic domains. The data are discussed in relation to the known structures of some cell adhesion molecules. Questions about the relative roles and distributions of the different polypeptides in desmosomal organisation are raised.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003896 Desmosomes A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Desmosome
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
April 1991, The Journal of cell biology,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
October 1990, Journal of cell science,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
December 1990, Journal of cell science,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
August 1984, Journal of cell science,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
April 2018, Clinical and experimental dermatology,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
September 1982, Proceedings of the National Academy of Sciences of the United States of America,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
April 2014, Clinical and experimental dermatology,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
June 2012, Molecular biology of the cell,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
January 1984, Biochemical and biophysical research communications,
E P Parrish, and J E Marston, and D L Mattey, and H R Measures, and R Venning, and D R Garrod
February 1995, Journal of cell science,
Copied contents to your clipboard!