ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-purinergic receptor. 1990

G Bruner, and S Murphy
Department of Pharmacology, College of Medicine, University of Iowa, Iowa City.

To reveal more of the mechanism whereby ATP induces arachidonic acid (AA) mobilization in astrocytes, primary cell cultures prelabeled with [3H]AA were exposed to ATP and various analogs. Release of 3H was dose and time dependent and was inhibited by blocking ATP binding. The potencies of a range of ATP analogs in mobilizing AA were consistent with that predicted for the involvement of a P2Y-purinergic receptor. Mobilization of AA was not due to non-specific cell permeabilization, as assessed by leakage of cytoplasmic lactate dehydrogenase. AA mobilization by ATP was reduced when mobilization of intracellular calcium was inhibited and in the absence of extracellular calcium. Thapsigargin, which induces release of intracellular calcium, evoked mobilization of AA and thromboxane formation, findings similar to the effects of ATP. These results suggest that ATP stimulates AA mobilization via a P2Y-purinergic receptor and that, although extracellular calcium is involved, mobilization of intracellular calcium activates phospholipase A2.

UI MeSH Term Description Entries
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D013729 Terpenes A class of compounds composed of repeating 5-carbon units of HEMITERPENES. Isoprenoid,Terpene,Terpenoid,Isoprenoids,Terpenoids
D013931 Thromboxanes Physiologically active compounds found in many organs of the body. They are formed in vivo from the prostaglandin endoperoxides and cause platelet aggregation, contraction of arteries, and other biological effects. Thromboxanes are important mediators of the actions of polyunsaturated fatty acids transformed by cyclooxygenase. Thromboxane
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

G Bruner, and S Murphy
May 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Bruner, and S Murphy
January 1990, Annals of the New York Academy of Sciences,
G Bruner, and S Murphy
February 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Bruner, and S Murphy
December 2012, Experimental eye research,
G Bruner, and S Murphy
February 2021, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!