The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. 2011

Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China. baifeng_fmmu@126.com

The purpose of this study was to investigate the role of pore size on tissue ingrowth and neovascularization in porous bioceramics under the accurate control of the pore parameters. For that purpose, β-tricalcium phosphate (β-TCP) cylinders with four different macropore sizes (300-400, 400-500, 500-600 and 600-700 µm) but the same interconnection size (120 µm) and unchangeable porosity were implanted into fascia lumbodorsalis in rabbits. The fibrous tissues and blood vessels formed in scaffolds were observed histologically and histomorphometrically. The vascularization of the porous bioceramics was analyzed by single-photon emission computed tomography (SPECT). It is found that pore size as an important parameter of a porous structure plays an important role in tissue infiltration into porous biomaterial scaffolds. The amount of fibrous tissue ingrowth increases with the decrease of the pore size. In four kinds of scaffolds with different macropore sizes (300-400, 400-500, 500-600 and 600-700 µm) and a constant interconnection size of 120 µm, the areas of fibrous tissue (%) were 60.5%, 52.2%, 41.3% and 37.3%, respectively, representing a significant decrease at 4 weeks (P < 0.01). The pore size of a scaffold is closely related to neovascularization of macroporous biomaterials implanted in vivo. A large pore size is beneficial for the growth of blood vessels, and the diameter of a pore smaller than 400 µm limits the growth of blood vessels and results in a smaller blood vessel diameter.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002130 Calcium Phosphates Calcium salts of phosphoric acid. These compounds are frequently used as calcium supplements. Phosphates, Calcium
D002516 Ceramics Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed) Ceramic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D016062 Porosity Condition of having pores or open spaces. This often refers to bones, bone implants, or bone cements, but can refer to the porous state of any solid substance. Porosities
D054457 Tissue Scaffolds Cell growth support structures composed of BIOCOMPATIBLE MATERIALS. They are specially designed solid support matrices for cell attachment in TISSUE ENGINEERING and GUIDED TISSUE REGENERATION uses. Tissue Scaffolding,Scaffold, Tissue,Scaffolding, Tissue,Scaffoldings, Tissue,Scaffolds, Tissue,Tissue Scaffold,Tissue Scaffoldings

Related Publications

Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 2022, Applied bionics and biomechanics,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
February 2016, Materials science & engineering. C, Materials for biological applications,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 2022, Journal of applied biomaterials & functional materials,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 1985, The Hip,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 1974, Journal of biomedical materials research,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
March 2006, Biomaterials,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 2004, Biomaterials,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
December 2006, Biomaterials,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
April 2002, Biomaterials,
Bai Feng, and Zhang Jinkang, and Wang Zhen, and Lu Jianxi, and Chang Jiang, and Liu Jian, and Meng Guolin, and Dong Xin
January 1980, Clinical orthopaedics and related research,
Copied contents to your clipboard!