Stereotactic brain biopsy with a low-field intraoperative magnetic resonance imager. 2011

John Quinn, and David Spiro, and Michael Schulder
Department of Neurological Surgery, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.

BACKGROUND Techniques for stereotactic brain biopsy have evolved in parallel with the imaging modalities used to visualize the brain. OBJECTIVE To describe our technique for performing stereotactic brain biopsy using a compact, low-field, intraoperative magnetic resonance imager (iMRI). METHODS Thirty-three patients underwent stereotactic brain biopsies with the PoleStar N-20 iMRI system (Medtronic Navigation, Louisville, Colorado). Preoperative iMRI scans were obtained for biopsy target identification and trajectory planning. A skull-mounted device (Navigus, Medtronic Navigation) was used to guide an MRI-compatible cannula to the target. An intraoperative image was acquired to confirm accurate cannula placement within the lesion. Serial images were obtained to track cannula movement and to rule out hemorrhage. Frozen sections were obtained in all but 1 patient with a brain abscess. RESULTS Diagnostic tissue was obtained in 32 of 33 patients. In all cases, imaging demonstrated cannula placement within the lesion. Histological diagnoses included 22 primary brain tumors and 10 nonneoplastic lesions. In 61% of the cases, initial trajectory was corrected on the basis of the intraoperative scans. In 1 patient, biopsy was nondiagnostic despite accurate cannula placement. No patient suffered a clinically or radiographically significant hemorrhage during or after surgery. There were no intraoperative complications. CONCLUSIONS Stereotactic biopsy with a low-field iMRI is an accurate way to obtain specimens with a high diagnostic yield. This accuracy, combined with the acceptable additional procedural time, may obviate the need for frozen section. The ability to correct biopsy cannula placement during surgery eliminates the chance of misdiagnosis because of faulty targeting, as well as the risks associated with inconclusive frozen sections and "blind" replacement of the cannula.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

John Quinn, and David Spiro, and Michael Schulder
November 2000, Neurosurgery,
John Quinn, and David Spiro, and Michael Schulder
January 2009, Topics in magnetic resonance imaging : TMRI,
John Quinn, and David Spiro, and Michael Schulder
February 2005, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
John Quinn, and David Spiro, and Michael Schulder
December 2012, Neurosurgery,
John Quinn, and David Spiro, and Michael Schulder
October 2004, Neurologia medico-chirurgica,
John Quinn, and David Spiro, and Michael Schulder
April 1998, Neurosurgical focus,
John Quinn, and David Spiro, and Michael Schulder
October 2012, Zhonghua wai ke za zhi [Chinese journal of surgery],
John Quinn, and David Spiro, and Michael Schulder
January 1999, Stereotactic and functional neurosurgery,
John Quinn, and David Spiro, and Michael Schulder
April 2013, Acta neurochirurgica,
Copied contents to your clipboard!