The mitochondrial permeability transition pore and the cardiac necrotic program. 2011

Christopher P Baines
Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO 65211, USA. bainesc@missouri.edu

That apoptosis is mediated by specific pathways has long been established. However, more recent data have begun to suggest that necrosis may in fact be "programmed" and not a default "accidental" pathway as previously thought. The mitochondrial permeability transition pore, a known contributor to the development of many cardiac diseases, is emerging as one among several mediators of this necrotic program. Consequently, this report briefly reviews the roles of necrosis versus apoptosis in the pathogenesis of cardiac disease and discusses the role that the mitochondrial pore plays in cardiac necrotic cell death.

UI MeSH Term Description Entries
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D006331 Heart Diseases Pathological conditions involving the HEART including its structural and functional abnormalities. Cardiac Disorders,Heart Disorders,Cardiac Diseases,Cardiac Disease,Cardiac Disorder,Heart Disease,Heart Disorder
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000083162 Mitochondrial Permeability Transition Pore A multiprotein inner mitochondrial complex which opens only under certain pathological conditions (e.g., OXIDATIVE STRESS) uncoupling the membrane leading to APOPTOSIS and MITOCHONDRIAL TRANSMEMBRANE PERMEABILITY-DRIVEN NECROSIS particularly in CARDIOMYOCYTES during MYOCARDIAL REPERFUSION INJURY. Mitochondrial Megachannel,Mitochondrial Permeability Transition Pore (mPTP),mPTP Protein
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D033681 Mitochondrial Membrane Transport Proteins Proteins involved in the transport of specific substances across the membranes of the MITOCHONDRIA. Membrane Transport Proteins, Mitochondrial,Mitochondrial Carrier Proteins,Mitochondrial Carriers,Mitochondrial Transport Proteins,Carrier Proteins, Mitochondrial,Transport Proteins, Mitochondrial

Related Publications

Christopher P Baines
January 2007, Novartis Foundation symposium,
Christopher P Baines
January 1999, Biochemical Society symposium,
Christopher P Baines
April 2011, American journal of physiology. Heart and circulatory physiology,
Christopher P Baines
May 2006, Cardiovascular research,
Christopher P Baines
January 2014, Circulation journal : official journal of the Japanese Circulation Society,
Christopher P Baines
January 2023, Journal of molecular and cellular cardiology,
Christopher P Baines
June 2009, Journal of molecular and cellular cardiology,
Christopher P Baines
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!