Glycosyltransferases enzymatically transfer monosaccharides from sugar-nucleotides to complex oligosaccharide chains and, as cell surface molecules, exhibit receptor-like activity. We have modified the substate UDP-galactose to produce a compound that has useful absorbance and fluorescence properties upon binding to galactosyltransferase (GalTase). Using strategies similar to those for preparing fluorescent ATP analogs, we were able to synthesize 2,4,6-trinitrophenyl-5'-UDP-galactose (TUG). In solution, the absorbance properties of TUG are pH dependent, with absorbance maxima at 260, 408, and 453 nm and an isobestic point at 353 nm. In the presence of soluble GalTase extracted from bovine milk, TUG exhibited an excitation maximum at 368 nm with emission maxima at 436 and 533 nm; in the absence of GalTase only the 533-nm peak was present. Under enzymatic conditions, TUG acted as a competitive substrate of UDP-galactose with GalTase. Under noncatalytic conditions, the fluorescence emission of TUG at 436 nm increased monotonically with Gal-Tase concentration, with a half-maximal response at approximately 4 microM. This compound may be useful for quantifying GalTase function as both an enzyme and a cell adhesion molecule.