Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. 2011

Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Sciences Bldg. II, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.

Uropathogenic Escherichia coli (UPEC), the predominant cause of uncomplicated urinary tract infection (UTI), utilizes an array of outer membrane iron receptors to facilitate siderophore and heme import from within the iron-limited urinary tract. While these systems are required for UPEC in vivo fitness and are assumed to be functionally redundant, the relative contributions of specific receptors to pathogenesis are unknown. To delineate the relative roles of distinct UPEC iron acquisition systems in UTI, isogenic mutants in UPEC strain CFT073 or 536 lacking individual receptors were competed against one another in vivo in a series of mixed infections. When combinations of up to four mutants were coinoculated using a CBA/J mouse model of ascending UTI, catecholate receptor mutants (ΔfepA, Δiha, and ΔiroN mutants) were equally fit, suggesting redundant function. However, noncatecholate siderophore receptor mutants, including the ΔiutA aerobactin receptor mutant and the ΔfyuA yersiniabactin receptor mutant, were frequently outcompeted by coinoculated mutants, indicating that these systems contribute more significantly to UPEC iron acquisition in vivo. A tissue-specific preference for heme acquisition was also observed, as a heme uptake-deficient Δhma ΔchuA double mutant was outcompeted by siderophore receptor mutants specifically during kidney colonization. The relative contribution of each receptor to UTI only partially correlated with in vivo levels of receptor gene expression, indicating that other factors likely contributed to the observed fitness differences. Overall, our results suggest that UPEC iron receptors provide both functional redundancy and niche specificity for this pathogen as it colonizes distinct sites within the urinary tract.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004927 Escherichia coli Infections Infections with bacteria of the species ESCHERICHIA COLI. E coli Infections,E. coli Infection,Infections, E coli,Infections, Escherichia coli,E coli Infection,E. coli Infections,Escherichia coli Infection,Infection, E coli,Infection, E. coli,Infection, Escherichia coli
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D014552 Urinary Tract Infections Inflammatory responses of the epithelium of the URINARY TRACT to microbial invasions. They are often bacterial infections with associated BACTERIURIA and PYURIA. Infection, Urinary Tract,Infections, Urinary Tract,Tract Infection, Urinary,Tract Infections, Urinary,Urinary Tract Infection
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017262 Siderophores Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994) Siderophore,Siderochromes

Related Publications

Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
February 2021, Microorganisms,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
November 2004, Infection and immunity,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
March 2020, Giornale italiano di cardiologia (2006),
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
November 1966, Investigative urology,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
March 2018, mBio,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
January 2012, mBio,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
July 1995, Tropical doctor,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
January 1977, Proceedings of the European Dialysis and Transplant Association. European Dialysis and Transplant Association,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
October 2012, Current drug targets,
Erin C Garcia, and Ariel R Brumbaugh, and Harry L T Mobley
December 2006, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!