Antigenic modules in the N-terminal S1 region of the transmissible gastroenteritis virus spike protein. 2011

Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
Department of Macromolecule Structure, Centro Nacional de Biotecnologia, CSIC, Campus Universidad Autónoma, Darwin 3, 28049 Madrid, Spain.

The N-terminal S1 region of the transmissible gastroenteritis virus (TGEV) spike (S) glycoprotein contains four antigenic sites (C, B, D and A, from the N- to the C-terminal end) and is engaged in host-cell receptor recognition. The most N-terminal portion of the S1 region, which comprises antigenic sites C and B, is needed for the enteric tropism of TGEV, whereas the major antigenic site A at the C-terminal moiety is required for both respiratory and enteric cell tropism, and is engaged in recognition of the aminopeptidase N (APN) receptor. This study determined the kinetics for binding of a soluble S1 protein to the APN protein. Moreover, the S1 region of the TGEV S protein was dissected, with the aim of identifying discrete modules displaying unique antigenic sites and receptor-binding functions. Following protease treatments and mammalian cell expression methods, four modules or domains (D1-D4) were defined at the S1 region. Papain treatment identified an N-terminal domain (D1) resistant to proteolysis, whereas receptor binding defined a soluble and functional APN receptor-binding domain (D3). This domain was recognized by neutralizing antibodies belonging to the antigenic site A and therefore could be used as an immunogen for the prevention of viral infection. The organization of the four modules in the S1 region of the TGEV S glycoprotein is discussed.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005760 Transmissible gastroenteritis virus A species of CORONAVIRUS causing a fatal disease to pigs under 3 weeks old. Gastroenteritis Virus of Swine,Gastroenteritis Virus, Porcine Transmissible,Porcine Transmissible Gastroenteritis Virus,TGE Virus,Transmissible Gastroenteritis Virus, Swine,Swine Gastroenteritis Virus,Swine Gastroenteritis Viruses,TGE Viruses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
December 2022, Monoclonal antibodies in immunodiagnosis and immunotherapy,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
March 2019, Viruses,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
January 1995, Advances in experimental medicine and biology,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
April 2000, Vaccine,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
May 1992, Virology,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
December 2019, Pathogens (Basel, Switzerland),
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
May 2011, Canadian journal of microbiology,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
June 1990, The Journal of general virology,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
June 1987, The Journal of general virology,
Juan Reguera, and Desiderio Ordoño, and César Santiago, and Luis Enjuanes, and José M Casasnovas
July 2013, Viruses,
Copied contents to your clipboard!