Effects of electric fields on cytoskeleton of corneal stromal fibroblasts. 1990

H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
Department of Ophthalmology, University of Michigan, Ann Arbor.

Low-level, steady electric fields (6-10 volts/cm) stimulated cultured corneal stromal fibroblasts to undergo directional orientation and translocation. The orientative movements (galvanotropism) consisted of somatic elongation of the cells into spindle shapes along an imaginary axis perpendicular to the field; the cathodal edge of the cell underwent retraction, while the anodal edge and the longitudinal ends developed ruffled membranes and lamellipodia. The translocational movements (galvanotaxis) consisted of directed migration of the cells towards the anode. While most actin-containing stress fibers became aligned along the long axes of the elongated fibroblasts (with distal ends of the stress fibers terminating at the longitudinal extremes of the cells), some were aligned towards the anodal direction (with distal terminations inside ruffled membranes and lamellipodia on the leading anodal edge of cells). The distal ends of stress fibers were associated with discrete foci of vinculin, ie, focal indicators of cell-to-substrate adhesion; these foci were abundant at the longitudinal ends and at the anodal edge of the elongated cells. The observed cytoskeletal changes are consistent with an active, rather than passive, directed migration of stromal fibroblasts in response to constant electric fields.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003319 Corneal Stroma The lamellated connective tissue constituting the thickest layer of the cornea between the Bowman and Descemet membranes. Corneal Stromas,Stroma, Corneal,Stromas, Corneal
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
February 1990, The Journal of experimental zoology,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
September 2010, The Journal of investigative dermatology,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
June 2010, Biochemical and biophysical research communications,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
July 2020, Advanced biosystems,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
March 2014, Experimental eye research,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
June 2018, Biophysical journal,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
July 2000, Experimental eye research,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
January 1996, Cell motility and the cytoskeleton,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
March 2017, Scientific reports,
H K Soong, and W C Parkinson, and G L Sulik, and S Bafna
January 1988, Journal of ocular pharmacology,
Copied contents to your clipboard!