Trypanosoma brucei: a model micro-organism to study eukaryotic phospholipid biosynthesis. 2011

Mauro Serricchio, and Peter Bütikofer
Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.

Although the protozoan parasite, Trypanosoma brucei, can acquire lipids from its environment, recent reports have shown that it is also capable of de novo synthesis of all major phospholipids. Here we provide an overview of the biosynthetic pathways involved in phospholipid formation in T. brucei and highlight differences to corresponding pathways in other eukaryotes, with the aim of promoting trypanosomes as an attractive model organism to study lipid biosynthesis. We show that de novo synthesis of phosphatidylethanolamine involving CDP-activated intermediates is essential in T. brucei and that a reduction in its cellular content affects mitochondrial morphology and ultrastructure. In addition, we highlight that reduced levels of phosphatidylcholine inhibit nuclear division, suggesting a role for phosphatidylcholine formation in the control of cell division. Furthermore, we discuss possible routes leading to phosphatidylserine and cardiolipin formation in T. brucei and review the biosynthesis of phosphatidylinositol, which seems to take place in two separate compartments. Finally, we emphasize that T. brucei represents the only eukaryote so far that synthesizes all three sphingophospholipid classes, sphingomyelin, inositolphosphorylceramide and ethanolaminephosphorylceramide, and that their production is developmentally regulated.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002518 Ceramides Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE. Ceramide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Mauro Serricchio, and Peter Bütikofer
January 1995, Annual review of biochemistry,
Mauro Serricchio, and Peter Bütikofer
May 2013, Expert opinion on drug discovery,
Mauro Serricchio, and Peter Bütikofer
April 2003, Biological chemistry,
Mauro Serricchio, and Peter Bütikofer
April 1986, Archives of biochemistry and biophysics,
Mauro Serricchio, and Peter Bütikofer
October 2003, Nucleic acids research,
Mauro Serricchio, and Peter Bütikofer
December 2001, The Journal of biological chemistry,
Mauro Serricchio, and Peter Bütikofer
August 1994, Toxicology in vitro : an international journal published in association with BIBRA,
Mauro Serricchio, and Peter Bütikofer
May 1980, The American journal of pathology,
Copied contents to your clipboard!