High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews. 1990

M P She, and R Y Xia, and B F Ran, and Z L Wong
Department of Pathology, Chinese Academy of Medical Sciences, Beijing.

According to data obtained from epidemiological and experimental survey, serum HDL level is known to be correlated conversely with the incidence of atherosclerosis. Experimental data collected in this article explained part of its mechanism, which is described in four parts as follows: 1. The result of 3 successive experiments on experimental atherosclerosis in tree shrews (total of 96 animals available including 40 as the controls) showed that the serum HDL level had been kept persistantly to 69-88% of the total serum lipoproteins even after a high cholesterol intake for 32 weeks. The incidence of atheromatous lesions developed was only 0-9%, but the incidence of gall stone was very high, 48-84% by gross examination by the end of these experiments. 2. HDL are also capable of (1) promotion of monocyte migration activity; (2) enhancement of cholesterol clearance rate of aortic smooth muscle cells originally isolated from either rabbits or tree shrews; (3) inhibition of 20% of LDL degradation but with no inhibitory effect obtained on Ac-LDL degradation in the endothelial cells; (4) presence of specific binding sites for apo E free HDL on the surface of aortic smooth muscle cells from either rabbits or tree shrews which recognizes apo A1 as a ligand. 3. Data from 2 successive experiments in rabbits showed that HDL lipoproteins (mainly apo A1) possess an inhibitory effect on the development of atheromatous plaques, but not a very strong one. 4. The colesterol clearance effect of smooth muscle cells was markedly enhanced by apo A1/phospholipid liposomes (the apo A1 used was isolated from either rabbit's or tree shrew's serum) in vitro.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001054 Apolipoproteins A Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE. Apo-A,ApoA

Related Publications

M P She, and R Y Xia, and B F Ran, and Z L Wong
November 1982, The New England journal of medicine,
M P She, and R Y Xia, and B F Ran, and Z L Wong
January 1980, Annual review of medicine,
M P She, and R Y Xia, and B F Ran, and Z L Wong
January 2004, Przeglad lekarski,
M P She, and R Y Xia, and B F Ran, and Z L Wong
May 1979, Medical times,
M P She, and R Y Xia, and B F Ran, and Z L Wong
January 1978, Biochemical Society transactions,
M P She, and R Y Xia, and B F Ran, and Z L Wong
October 1986, Medicina clinica,
M P She, and R Y Xia, and B F Ran, and Z L Wong
October 2002, The American journal of cardiology,
M P She, and R Y Xia, and B F Ran, and Z L Wong
September 2010, Expert review of cardiovascular therapy,
M P She, and R Y Xia, and B F Ran, and Z L Wong
August 1970, The Journal of pathology,
M P She, and R Y Xia, and B F Ran, and Z L Wong
January 2004, Archivos de cardiologia de Mexico,
Copied contents to your clipboard!