[Normal tissue tolerance to high LET radiotherapy]. 1990

S Morita, and H Tsunemoto
Hospital Division, National Institute of Radiological Sciences NIRS.

Based on the clinical evaluations about over 1800 patients who had been treated with fast neutrons at NIRS, the radiobiological properties of high LET radiations were discussed. The most favorable clinical results by fast neutron treatment had been revealed in such diseases as follows; salivary gland tumors, prostate cancer, Pancoast type lung cancer, osteosarcoma, soft tissue sarcoma. The characteristics of these tumors as to the radiobiological properties and the dose distribution are, 1) relatively slow growing tumors and higher RBE for tumor tissue, and 2) capability of correct delivery of a big radiation doses to the target, without any severe radiation complications. Normal tissue tolerance (NSD formulas) for each tissues were also discussed.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002583 Uterine Cervical Neoplasms Tumors or cancer of the UTERINE CERVIX. Cancer of Cervix,Cancer of the Cervix,Cancer of the Uterine Cervix,Cervical Cancer,Cervical Neoplasms,Cervix Cancer,Cervix Neoplasms,Neoplasms, Cervical,Neoplasms, Cervix,Uterine Cervical Cancer,Cancer, Cervical,Cancer, Cervix,Cancer, Uterine Cervical,Cervical Cancer, Uterine,Cervical Cancers,Cervical Neoplasm,Cervical Neoplasm, Uterine,Cervix Neoplasm,Neoplasm, Cervix,Neoplasm, Uterine Cervical,Uterine Cervical Cancers,Uterine Cervical Neoplasm
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D005214 Fast Neutrons Neutrons, the energy of which exceeds some arbitrary level, usually around one million electron volts. Fast Neutron,Neutron, Fast,Neutrons, Fast
D005260 Female Females

Related Publications

S Morita, and H Tsunemoto
October 2003, Surgical oncology clinics of North America,
S Morita, and H Tsunemoto
November 2000, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology,
S Morita, and H Tsunemoto
April 1975, Rinsho hoshasen. Clinical radiography,
S Morita, and H Tsunemoto
January 1988, British journal of radiology. Supplement,
S Morita, and H Tsunemoto
July 2012, International journal of radiation oncology, biology, physics,
S Morita, and H Tsunemoto
July 1973, Radiology,
S Morita, and H Tsunemoto
August 1990, International journal of radiation oncology, biology, physics,
S Morita, and H Tsunemoto
February 1999, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!