To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. 2012

Urs Meyer, and Joram Feldon
Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland. urmeyer@ethz.ch

The neurodevelopmental hypothesis of schizophrenia has been highly influential in shaping our current thinking about modeling the disease in animals. Based on the findings provided by human epidemiological studies, a great deal of recent interest has been centered upon the establishment of neurodevelopmental rodent models in which the basic experimental manipulation takes the form of prenatal exposure to infection and/or immune activation. One such model is based on prenatal treatment with the inflammatory agent poly(I:C) (=polyriboinosinic-polyribocytidilic acid), a synthetic analog of double-stranded RNA. Since its initial establishment and application to basic schizophrenia research, the poly(I:C) model has made a great impact on researchers concentrating on the neurodevelopmental and neuroimmunological basis of complex human brain disorders such as schizophrenia, and as a consequence, the model now enjoys wide recognition in the international scientific community. The present article emphasizes that the poly(I:C) model has gained such impact because it successfully accounts for several aspects of schizophrenia epidemiology, pathophysiology, symptomatology, and treatment. The numerous features of this experimental system make the poly(I:C) model a very powerful neurodevelopmental animal model of schizophrenia-relevant brain disease which is expected to be capable of critically advancing our knowledge of how the brain, following an (immune-associated) triggering event in early life, can develop into a "schizophrenia-like brain" over time. Furthermore, the poly(I:C) model seems highly suitable for the exploration of novel pharmacological and neuro-immunomodulatory strategies for both symptomatic and preventive treatments against psychotic disease, as well as for the identification of neurobiological mechanisms underlying gene-environment and environment-environment interactions presumably involved in the etiology of schizophrenia and related disorders.

UI MeSH Term Description Entries
D011070 Poly I-C Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid. Poly(I-C),Poly(rI).Poly(rC),Polyinosinic-Polycytidylic Acid,Polyinosinic-Polycytidylic Acid (High MW),Polyriboinosinic-Polyribocytidylic Acid,Polyribose Inosin-Cytidil,Inosin-Cytidil, Polyribose,Poly I C,Polyinosinic Polycytidylic Acid,Polyriboinosinic Polyribocytidylic Acid,Polyribose Inosin Cytidil
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011297 Prenatal Exposure Delayed Effects The consequences of exposing the FETUS in utero to certain factors, such as NUTRITION PHYSIOLOGICAL PHENOMENA; PHYSIOLOGICAL STRESS; DRUGS; RADIATION; and other physical or chemical factors. These consequences are observed later in the offspring after BIRTH. Delayed Effects, Prenatal Exposure,Late Effects, Prenatal Exposure
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D015213 Neuroimmunomodulation The biochemical and electrophysiological interactions between the NERVOUS SYSTEM and IMMUNE SYSTEM. Cholinergic Anti-inflammatory Pathway,Neuro-immune Axis,Neuro-immune Communication,Neuro-immune Interactions,Neuro-immunomodulation,Neuroimmune Axis,Neuroimmune Communication,Neuroimmune Interactions,Neuroimmune Processes,Vagal Anti-inflammatory Pathway,Vagal-immune Interactions,Neuroimmune Mechanisms,Neuroimmune Process,Anti-inflammatory Pathway, Cholinergic,Anti-inflammatory Pathway, Vagal,Cholinergic Anti inflammatory Pathway,Cholinergic Anti-inflammatory Pathways,Communication, Neuro-immune,Communication, Neuroimmune,Interaction, Neuro-immune,Interaction, Neuroimmune,Mechanism, Neuroimmune,Neuro immune Axis,Neuro immune Communication,Neuro immune Interactions,Neuro immunomodulation,Neuro-immune Communications,Neuro-immune Interaction,Neuroimmune Communications,Neuroimmune Interaction,Neuroimmune Mechanism,Process, Neuroimmune,Vagal Anti inflammatory Pathway,Vagal Anti-inflammatory Pathways,Vagal immune Interactions,Vagal-immune Interaction

Related Publications

Urs Meyer, and Joram Feldon
February 2014, Biological psychiatry,
Urs Meyer, and Joram Feldon
August 2021, Progress in neuro-psychopharmacology & biological psychiatry,
Urs Meyer, and Joram Feldon
January 2013, Innate immunity,
Copied contents to your clipboard!