Cochlear innervation in the developing rat: an immunocytochemical study of neurofilament and spectrin proteins. 1990

A Hafidi, and G Despres, and R Romand
Laboratoire de Neurobiologie, Université Blaise Pascal, Aubière, France.

We have studied the innervation of the developing cochlea by immunocytochemical staining of the cytoskeletal proteins, neurofilament (NF), and spectrin (brain spectrin and erythrocyte spectrin). NF immunoreactivity was seen in spiral ganglion cell bodies and their processes and in fibers of the intraganglionic spiral bundle (IGSB) on gestational day 16. NF immunoreactivity with monoclonal antibodies to NF160 and NF68 was present beneath both inner hair cells (the IHC) and outer hair cells (OHCs) on gestational day 20. NF200 immunostaining was located only in the IGSB and in fibers reaching the IHC. The first NF200 immunoreactivity beneath the OHCs was seen in the basal turn at birth. NF labelling began to decrease on postnatal day 9 and its intensity became more like that of the adult. Brain spectrin immunostaining was first seen in the IGSB of the basal turn on gestational day 18. It reached the fibers between the spiral ganglion and the IHC on gestational day 20. Brain spectrin immunoreactivity was first seen beneath the OHCs in the basal turn at birth. It reached all the OHCs of the cochlea by postnatal day 4, and began to decrease 9 days after birth. Erythrocyte spectrin immunostaining was first observed during the second postnatal week, when it labelled spiral ganglion cells. The distribution of NF200 and brain spectrin immunoreactivity suggested that efferent innervation of OHCs is present at birth in the rat, and confirms previous studies showing the early efferent innervation of the OHCs of the mouse and the rat at birth, and the time lag between the appearance of the two spectrin isoforms during development.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013049 Spectrin A high molecular weight (220-250 kDa) water-soluble protein which can be extracted from erythrocyte ghosts in low ionic strength buffers. The protein contains no lipids or carbohydrates, is the predominant species of peripheral erythrocyte membrane proteins, and exists as a fibrous coating on the inner, cytoplasmic surface of the membrane. alpha-Spectrin,beta-Spectrin,alpha Spectrin,beta Spectrin

Related Publications

A Hafidi, and G Despres, and R Romand
January 1993, ORL; journal for oto-rhino-laryngology and its related specialties,
A Hafidi, and G Despres, and R Romand
October 1993, The Journal of comparative neurology,
A Hafidi, and G Despres, and R Romand
March 1984, The Journal of comparative neurology,
A Hafidi, and G Despres, and R Romand
January 1983, Cell and tissue research,
A Hafidi, and G Despres, and R Romand
January 1987, The Histochemical journal,
A Hafidi, and G Despres, and R Romand
January 1990, Acta histochemica. Supplementband,
A Hafidi, and G Despres, and R Romand
January 1996, Brain research. Developmental brain research,
A Hafidi, and G Despres, and R Romand
June 2008, BJU international,
A Hafidi, and G Despres, and R Romand
January 1985, Acta oto-laryngologica,
Copied contents to your clipboard!