Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. 1990

S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
Department of Cellular Immunology, Walter Reed Army Institute of Research, Washington, DC 20307-5100.

Macrophages exposed to IFN-gamma and infected with amastigotes of Leishmania major develop the capacity to eliminate the intracellular pathogen. This antimicrobial activity of activated macrophages correlates with the initiation of nitrogen oxidation of L-arginine, yet other reports suggest that two signals are required for induction of this biochemical pathway for effector activity. In the present studies, macrophages treated with up to 100 U/ml IFN-gamma, or 100 ng LPS, or 10(7) amastigotes produced minimal quantities (less than 9 microM) of NO2- and failed to develop cytotoxic effector activities. In contrast, the combination of IFN-gamma and either LPS (greater than 0.1 ng) or amastigotes (10(6) induced high concentrations (much greater than 30 microM) of NO2- and macrophage cytotoxicity against intra- and extracellular targets. The induction of nitrogen oxidation by amastigotes could be dissociated from LPS-induced events by 1) performing the assays in the presence of polymyxin B (which blocked LPS effects, but not amastigote effects), 2) determining the threshold of IFN-gamma required to prime cells for subsequent trigger (1 U/ml for LPS trigger effects; 10-fold higher for amastigotes), and 3) determining the heat sensitivity of the two trigger agents (amastigote effects abolished at 100 degrees C; LPS effects unaffected at this temperature). Further, culture fluids from amastigote-infected macrophages did not contain detectable LPS (less than 6 pg/ml). Possible parasite and cell-associated factors that could contribute to the induction of nitrogen oxidation and cytotoxic activity of IFN-gamma treated macrophages were examined: only certain intact microorganisms, LPS from a variety of bacteria, and the cytokine TNF alpha were effective. Both NO2- production and intracellular killing were abolished by the addition of anti-TNF-alpha mAb in the assay. TNF-alpha was produced by amastigote-infected macrophages and IFN-gamma dramatically enhanced secretion of this cytokine; IFN-gamma alone had no effect. Endogenous TNF-alpha produced during infection of macrophages with L. major acted in an autocrine fashion to trigger the production of L-arginine-derived toxic nitrogen intermediates that killed the intracellular parasites.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007895 Leishmania tropica A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects humans and rodents. This taxonomic complex includes species which cause a disease called Oriental sore which is a form of cutaneous leishmaniasis (LEISHMANIASIS, CUTANEOUS) of the Old World. Leishmania (Leishmania) tropica,Leishmania tropica minor,Leishmania leishmania tropica,Leishmania tropicas
D007896 Leishmaniasis A disease caused by any of a number of species of protozoa in the genus LEISHMANIA. There are four major clinical types of this infection: cutaneous (Old and New World) (LEISHMANIASIS, CUTANEOUS), diffuse cutaneous (LEISHMANIASIS, DIFFUSE CUTANEOUS), mucocutaneous (LEISHMANIASIS, MUCOCUTANEOUS), and visceral (LEISHMANIASIS, VISCERAL). Leishmania Infection,Infection, Leishmania,Infections, Leishmania,Leishmania Infections,Leishmaniases
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008262 Macrophage Activation The process of altering the morphology and functional activity of macrophages so that they become avidly phagocytic. It is initiated by lymphokines, such as the macrophage activation factor (MAF) and the macrophage migration-inhibitory factor (MMIF), immune complexes, C3b, and various peptides, polysaccharides, and immunologic adjuvants. Activation, Macrophage,Activations, Macrophage,Macrophage Activations
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
January 1990, Journal of immunology (Baltimore, Md. : 1950),
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
December 1990, Journal of immunology (Baltimore, Md. : 1950),
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
January 1992, Journal of immunology (Baltimore, Md. : 1950),
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
October 1988, European journal of immunology,
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
May 1990, European journal of immunology,
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
January 1982, Advances in experimental medicine and biology,
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
October 1991, Journal of immunology (Baltimore, Md. : 1950),
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
May 1994, International immunology,
S J Green, and R M Crawford, and J T Hockmeyer, and M S Meltzer, and C A Nacy
January 2007, Journal of leukocyte biology,
Copied contents to your clipboard!