Responses of medullary neurons to moving visual stimuli in the common toad. II. An intracellular recording and cobalt-lysine labeling study. 1990

W W Schwippert, and T W Beneke, and J P Ewert
Abteilung Neurobiologie, Fachbereich Biologie/Chemie, Universität Kassel, Federal Republic of Germany.

Intracellular recording and labeling of cells from the toad's (Bufo bufo spinosus) medulla oblongata in response to moving visual (and tactual) stimuli yield the following results. (i) Various response types characterized by extracellular recording in medullary neurons were also identified intracellularly and thus assigned to properties of medullary cell somata. (ii) Focussing on monocular small-field and cyclic bursting properties, somata of such neurons were recorded most frequently in the medial reticular formation and in the branchiomotor column but less often in the lateral reticular formation. (iii) Visual object discrimination established in pretectal/tectal networks is increased in its acuity in 4 types of medullary small-field neurons. The excitatory and inhibitory inputs to these neurons evoked by moving visual objects suggest special convergence likely to increase the filter properties. (iv) Releasing conditions, temporal pattern, and refractoriness of cyclic bursting neurons resemble membrane characteristics of vertebrate and invertebrate neurons known to play a role in premotor/motor activity. (v) Integrating functions of medullary cells have an anatomical correlate in the extensive arborizations of their dendritic trees; 5 morphological types of medullary neurons have been distinguished.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002023 Bufo bufo A species of the true toads, Bufonidae, widely distributed in the United States and Europe. Toad, Common,Common Toad,Common Toads,Toads, Common
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59

Related Publications

W W Schwippert, and T W Beneke, and J P Ewert
September 1990, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
W W Schwippert, and T W Beneke, and J P Ewert
January 1981, Acta neurobiologiae experimentalis,
W W Schwippert, and T W Beneke, and J P Ewert
April 1986, The Journal of comparative neurology,
W W Schwippert, and T W Beneke, and J P Ewert
January 1978, Neirofiziologiia = Neurophysiology,
W W Schwippert, and T W Beneke, and J P Ewert
February 1973, Brain research,
W W Schwippert, and T W Beneke, and J P Ewert
January 1979, Vision research,
W W Schwippert, and T W Beneke, and J P Ewert
January 1974, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
W W Schwippert, and T W Beneke, and J P Ewert
August 1999, The Journal of comparative neurology,
W W Schwippert, and T W Beneke, and J P Ewert
January 2008, Journal of neurophysiology,
Copied contents to your clipboard!